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Abstract 

This paper investigates the free and forced vibration characteristics of functionally graded multilayer 

graphene nanoplatelet (GPL)/polymer composite plates within the framework of the first-order shear 

deformation plate theory. The weight fraction of GPL nanofillers shows a layer-wise variation along the 

thickness direction with GPLs uniformly dispersed in the polymer matrix in each individual layer. The 

effective Young’s modulus is predicted by the modified Halpin-Tsai model while the effective Poisson’s 

ratio and mass density are determined by the rule of mixture. Governing differential equations of 

motion are derived and Navier solution based technique is employed to obtain the natural frequencies 

and dynamic response of simply supported functionally graded GPL/polymer plates under a dynamic 

loading. A parametric study is conducted, with a particular focus on the effects of GPL distribution 

pattern, weight fraction, geometry and size as well as the total number of layers on the dynamic 

characteristics of the plates. 

Keywords: Graphene nanoplatelets; Functionally grade materials; Polymer composites; Multilayer 

plate; The first-order shear deformation plate theory; Dynamic behavior. 
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1. Introduction 

Owing to their extraordinary mechanical, thermal and electrical properties, carbon-filled polymer 

composites have been widely used in various engineering sectors including aerospace, automotive, 

biomedical, and civil engineering in the past two decades [1-4]. Compared with other carbon-based 

nanofillers, graphene or graphene platelets (GPLs) have extremely high specific surface areas with 

lower production cost, making them excellent candidates as the reinforcement materials in composites 

[5]. It has been theoretically and experimentally observed that the addition of even a very small amount 

of graphene into the pristine polymer matrix can dramatically improve its mechanical [6-10], thermal 

[11, 12], and electrical properties [12]. This creates a great opportunity for the development of 

advanced light weight structures made of graphene based polymer nanocomposites. 

    So far, the majority of the research efforts in this emerging area have been devoted to the synthesis, 

fabrication, and material property characterization of graphene based composites with low content of 

graphene fillers. Rafiee et al. [6] demonstrated that by adding 0.1% weight fraction (w.t.%) of GPLs, 

the strength and stiffness of the reinforced polymer composites are enhanced by the same degree 

achieved by adding 1.0 w.t.% of carbon nanotubes (CNTs). By embedding 6.0 w.t.% of GPLs in the 

epoxy matrix, King et al. [13] manufactured GPL/epoxy nanocomposites whose Young’s modulus 

increases from 2.72 GPa to 3.36 GPa. Fang et al. [14] fabricated polystyrene sheet nanocomposites 

with the incorporation of 0.9 w.t.% of graphene sheets, leading to a significant increase of 57.2% in 

Young’s modulus. Zhao et al. [15] manufactured graphene based polyvinyl alcohol by adding 1.8% 

volume fraction of graphene oxide into polyvinyl alcohol matrix and obtained a nanocomposite with 

Young's modulus 10 times greater than that of the pristine sample. Wang et al. [16] studied the effects 

of different GPL sizes on the mechanical properties of GPL/epoxy nanocomposites and their study 

indicated that a larger GPL size can significantly improve the tensile modulus but reduce the strength of 

the nanocomposites. 

    Besides the experimental efforts, some theoretical and numerical investigations on the mechanical 

performance of graphene based composites have also been carried out. Based on Mori-Tanaka model, 

Ji et al. [17] developed a micromechanics methods to study the effective elastic properties of 
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graphene/polymer composites. Rahman and Haque [18] investigated the effects of GPL concentrations, 

aspect ratios and dispersion on elastic constants and stress-strain responses of GPL/epoxy composites 

using molecular mechanics and molecular dynamics simulations. Liu et al. [19] carried out the study on 

the effects of wrinkles of graphene sheet, polymer matrix type, polymer molecule chain length and 

pull-out velocity on the interfacial mechanical properties of graphene enhanced nanocomposites by 

employing the molecular dynamics simulations. Montazeri and Rafii-Tabar [10] employed a molecular 

structural mechanics/finite element-based multiscale modeling approach to examine the effects of 

GPLs on Young's modulus of the polymer matrix. Spanos et al. [20] estimated the elastic mechanical 

properties of graphene reinforced composites by using a multiscale finite element method in which the 

atomistic molecular structural mechanics approach was combined with the continuum finite element 

method. 

Understanding the dynamic behavior of carbon-based composites and structures is crucial for their 

engineering applications. The static bending, elastic buckling, postbuckling, linear and nonlinear free 

and forced vibrations of CNT reinforced composite structures have been extensively investigated [21-

28]. Among those dealing with the dynamic behavior of graphene reinforced composites and structures, 

Long et al. [29] employed molecular dynamic simulation for the shock response of graphene/Cu 

nanolayered composite and discussed the deformation and spall damage of Cu, delamination of the 

nanolaminates, wrinkling and fracture of graphene. Rissanou et al. [30] studied the effect of the size of 

graphene sheets on structural and dynamical properties of several graphene based polymer 

nanocomposite systems by using detailed atomistic molecular dynamics simulations. Chandra et al. [31] 

presented a multiscale approach for the natural frequencies of graphene/polymer composite structures 

by modeling graphene at the atomistic scale and the matrix deformation by the continuum finite 

element method. It should be noted that researches on the dynamic behavior of graphene based 

nanocomposite structures are still very limited. To the best of authors' knowledge, all of the previous 

studies on material fabrication and mechanical behavior analysis considered nanocomposites reinforced 

with graphene nanofillers uniformly dispersed in the matrix only. No work has been done on 

nanocomposites and structures with non-uniformly distributed graphene reinforcements.  
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Functionally graded materials (FGMs) are characterized by continuous variations in both material 

composition and mechanical properties in one or more dimension(s) which can be tailored to 

simultaneously meet different performance requirements. Due to the constraint of current 

manufacturing technology, the fabrication of an ideal FGM structure with GPL concentration varying 

continuously over thickness direction is extremely difficult if not impossible. A multilayer structure 

consisting of a number of individual layers stacked up in which GPL weight fraction remains constant 

within each layer but follows a layer-wise gradual change through thickness is an excellent alternative 

if the total number of layers is sufficiently large. The present paper aims to investigate the dynamic 

performance of such functionally graded GPL/polymer nanocomposite plates under a transverse 

dynamic load. The modified Halpin-Tsai model is employed to predict the effective Young’s modulus 

while the rule of mixture is used to determine the effective Poisson’s ratio and mass density. 

Theoretical formulations are based on the first-order shear deformation plate theory. Double Fourier 

series solution in combination of Navier solution based technique is utilized to obtain the natural 

frequencies and the dynamic deflection response of the simply supported plate. A detailed numerical 

study are conducted to shed important insights into the effects of the distribution pattern, weight 

fraction, geometry and size of GPLs as well as the total number of layers on the free and forced 

vibrations of the functionally graded GPL/polymer nanocomposite plate. 

 

2. Problem Formulation 

A multi-layer GPL/polymer nanocomposite plate with length a , width b  and thickness h  subjected to 

a distributed transverse dynamic load F(X, Y, T) is shown in Fig. 1. The plate is composed of NL layers 

with the same thickness /h h N∆ =  and is reinforced by GPLs uniformly dispersed in the polymer 

matrix in each individual layer. The GPL weight fraction (w.t.%) shows a layer-wise variation to form a 

functionally graded structure. In order to investigate the effect of GPL distribution on the dynamic 

performance of the GPL/polymer plate, four different GPL distribution patterns shown in Fig. 2 are 

considered, among which Pattern 1 is a special case corresponding to an isotropic homogeneous plate 

in which GPLs are uniformly distributed at the same w.t.% across all layers. Patterns 2-4 represent, 
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respectively, a graded material composition where GPL weight fraction changes linearly from layer to 

layer along the plate thickness. The GPL weight fraction decreases from the highest in the midplane to 

the lowest on both top and bottom surfaces of the plate in Pattern 2 while in Pattern 3, this is reversed 

with the maximum weight fraction on both top and bottom surfaces and the lowest in the midplane of 

the plate. It should be noted that both Pattern 2 and Pattern 3 are symmetric whereas in non-

symmetrical Pattern 4, GPL weight fraction increases linearly from the top surface to the bottom 

surface.  

 

Fig. 1. A multi-layer functionally graded GPL/polymer nanocomposite plate 

 

 

Fig. 2. Different GPL distribution patterns 
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2.1 Effective Material Properties  

Modified Halpin-Tsai model is used to calculate the effective Young’s modulus of the GPL/polymer 

composite. Assuming GPLs as effective rectangular solid fillers uniformly dispersed in a polymer 

matrix, effective Young’s modulus of the GPL/polymer composite, CE , can be approximated by Voigt-

Reuss model [32]: 

 
3 5

8 8
C

E E E⊥= +
�

 (1) 

where longitudinal modulus E
�
and transverse modulus E⊥  can be determined by Halpin-Tsai model 

[33]: 
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Substituting Eqs (2) and (3) into Eq. (1) yields 
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ME  and 
GPLE

 
are Young's  moduli of the polymer matrix and GPLs, respectively, GPLV  is GPL volume 

fraction, 
L

ξ   and 
W

ξ  are the parameters characterizing both the geometry and size of GPL nanofillers, 

defined as 

 GPL

GPL

2L

l

h
ξ


= 

 
 (7) 



  

8 

 

 GPL
W

GPL

2
w

h
ξ


= 

 
 (8) 

in which GPLl , GPLw and GPLh are the average length, width, and thickness of the GPLs, respectively. 

Mass density Cρ
 
and Possion's ratio Cν  of the GPL/ polymer nanocomposite can be calculated by rule 

of mixture 

 C GPL GPL M MV Vρ ρ ρ= +  (9) 

 C GPL GPL M MV Vν ν ν= +  (10) 

where MV  is the volume fraction of polymer matrix, subscripts “GPL”, “M” and “c” stand for GPLs, 

polymer matrix and GPL/polymer nanocomposite, respectively. The volume fraction of GPLs, denoted 

by GPLV , is given by 
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g gρ ρ
=

+ −
 (11) 

where GPLg  is weight fraction of  GPLs in the nanocomposite.  

2.2 Governing Equation 

    According to the first-order shear deformation plate theory [34], the displacements of an arbitrary 

point in the plate are 
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where ( )0
, ,u X Y T , ( )0

, ,v X Y T  and ( )0
, ,w X Y T  are the mid-plane displacement components of the 

plate, and T  is time. Note that 
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which represent the rotations of the cross-section about the Y and X axes, respectively. The linear 

strain-displacement relationship gives 
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The stress components of the kth layer can be obtained from the linear elastic stress-strain constitutive 

relationship as 
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where 
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Based on Hamilton’s principle, the governing equations of motion of the GPL/polymer nanocomposite 

plate subjected to a dynamic load F(X, Y, T) can be derived as 

 
2 2

0
0 12 2

xyxx x
NN u

I I
X Y T T

φ∂∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂
  (19) 

 
22

0
0 12 2

xy yy yN N v
I I

X Y T T

φ∂ ∂ ∂∂
+ = +

∂ ∂ ∂ ∂
  (20) 

 

0 0

2

0 0 0
0 2

          ( , , )

yx
xx xy

xy yy

QQ w w
N N

X Y X X Y

w w w
N N F X Y T I

Y X Y T

∂∂ ∂ ∂ ∂ 
+ + + + 

∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂
+ + = 

∂ ∂ ∂ ∂ 

  (21) 

 
2 2

0
2 12 2

xyxx x
x

MM u
Q I I

X Y T T

φ∂∂ ∂ ∂
+ − = +

∂ ∂ ∂ ∂
  (22) 

 
2 2

0

2 12 2

xy yy y

y

M M v
Q I I

X Y T T

φ∂ ∂ ∂ ∂
+ − = +

∂ ∂ ∂ ∂
  (23) 

       The inertia related terms are defined by 
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where ( )kρ  is the mass density of the kth layer. The axial forces (Nxx , Nyy, Nxy), bending moments (Mxx , 

Myy, Mxy) and shear forces (Qx , Qy) are related to strain components by 
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where shear correction factor
 

5 / 6Sk = . The stiffness elements , , ,
ij ij ij

A B D  and 
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K  of the plate are 

defined as 
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       Substituting Eqs (25)-(27) into Eqs (19)-(23) and introducing the following dimensionless 

parameters 

 

0 0 0

M

2

M M M

3 1

M M M M

,     ,     ,     ,     ,   ,

= ,      ,     ,     ,

, ,     ,      

ij ij

ij ij

ij ij i
ij ij i i

X Y u v w h
x y u v w

a b h h h a

A Ba T E
t A B

b h E a E a

D K I F
D K I f

E a E a h E

α

β
ρ

ρ +

= = = = = =

= = =

= = = =

 (30) 

the governing equations can be rewritten in terms of dimensionless displacements ( , , , , )
x y

u v w φ φ  
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where the expressions of partial differential operators Lij are given in Appendix A.  

      It is assumed that the plate is simply supported at all edges with boundary conditions  
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3. Solution procedure 

3.1 Forced vibration analysis 

 Galerkin’s method is used to obtain the analytical solution for the governing partial differential Eqs 

(31)-(35) under boundary conditions specified in Eqs (36) and (37). The dimensionless displacements 

are expressed in double Fourier series as  
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where ( )mnU t , ( )mnV t , ( )mnW t , ( )mnX t , and ( )mnY t  are unknown functions of dimensionless time t.  

      Substituting Eqs (38)-(42) into Eqs (31)-(35), multiplying the equations by cos sinp x q yπ π , 

sin cosp x q yπ π , sin sinp x q yπ π , cos sinp x q yπ π  and sin cosp x q yπ π , respectively, in which p and q 

are positive integers; then integrating the resulting equations with respect to x  from 0 to 1 and y  from 

0 to 1, the spatially discretized equations of the plate can be derived as follows 
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The details of all elements in matrices [M] and [S] are given in Appendix B. 

     Eq. (43) is then solved by the variable-step fourth-fifth-order Runge-Kutta method [35] to determine 

the forced response of the plate. 

3.2 Free vibration analysis 

     Free vibration can be treated as a subset problem in Eq. (43). For harmonic vibration, let 

 { } { }
0

i te ω∆ = ∆  (45) 

where ω  is the dimensionless natural frequency, { } { }0 0 0 0 0

0

T

mn mn mn mn mnU V W X Y∆ =  is the unknown 

coefficients associated with displacement components. Substituting Eq. (45) into Eq. (43) and dropping 

off the force vector { }Q , the following eigenvalue equation is obtained 

 [ ] [ ]( ){ } { }2

0
0S Mω− ∆ =  (46) 

The natural frequencies can be found from the nontrivial solution of Eq. (46). 

4. Results and discussion 

     A detailed parametric study is conducted in this section to investigate the free and forced vibrations 

of the multi-layer functionally graded GPL/polymer plates, with a particular focus on the effects of the 

distribution pattern, weight fraction, length-to-thickness and length-to-width ratios of GPLs, and the 
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total number of layers on the dynamic characteristics of the plate. Numerical results are presented in 

both tabular and graphical forms. 

4.1 Free vibration 

     As there are no results available for the vibration behavior of graphene based nanocomposite plates 

in open literature, a simply supported aluminum/alumina (Al/Al2O3) functionally graded square plate is 

used as an example and its dimensionless natural frequency 2 2/h Eω ω ρ=  is compared with the 

existing ones [36] in Table 1 to validate the present analysis. The material properties are 
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= × = =

= × = =
 (47) 

    It is assumed that the top and bottom surfaces of the plate are Al and Al2O3 rich, respectively. The 

effective material properties through the thickness, ( )P z , follow a power law distribution [37] 
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 (48) 

where 1P  and 2P  denote the properties of Al and Al2O3, respectively, and ϑ  is the volume fraction 

index. By employing the equivalent homogenous laminated structure approach [38-40], a functionally 

graded plate is divided into a finite number of isotropic and homogenous layers along the thickness 

direction and the equivalent effective material property of each layer is defined as the average value of 

Eq. (48) within the layer as [40] 
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    As can be observed, our results converge monotonically as the number of layers increases and are in 

excellent agreement with the higher-order deformation plate theory based results [36]. The maximum 

difference is 1.30% for the plate with a/h = 5, and 0.38% for the plate with a/h = 10. 

Table 1. Dimensionless fundamental natural frequency 2 2/h Eω ω ρ=  of a simply supported 

Al/Al2O3 functionally graded square plate 

a/h                 NL   ϑ    

 0.0 0.5 1.0 4.0 10.0 

5      
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                     10 0.2112 0.1809 0.1634 0.1393 0.1316 

                     20 0.2112 0.1806 0.1632 0.1396 0.1322 

                     30 0.2112 0.1805 0.1631 0.1396 0.1323 

                     40 0.2112 0.1805 0.1631 0.1396 0.1323 

                Ref. [36] 0.2121 0.1819 0.1640 0.1383 0.1306 

10      

                     10 0.05769 0.04912 0.04427 0.03811 0.03632 

                     20 0.05769 0.04903 0.04421 0.03820 0.03651 

                     30 0.05769 0.04901 0.04420 0.03822 0.03655 

                     40 0.05769 0.04901 0.04420 0.03823 0.03656 

                Ref. [36] 0.05777 0.04917 0.04426 0.03811 0.03642 

 

    In what follows, epoxy is chosen as the polymer matrix. Unless otherwise stated, the plate 

( 0.45m 0.45m 0.045m)a b h× × = × × is reinforced with GPLs with dimensions GPL 2.5 ml µ= , 

GPL 1.5 mw µ= , GPL 1.5nmh = . The material properties of GPLs and epoxy are 3

GPL 1.06g/cmρ = , 

GPL 1.01TPaE = , 3

M 1.2g/cmρ =  [6]; M 3.0GPaE = , M 0.34ν =  [41]; GPL 0.186ν =  [42]. In addition, 

GPL weight fraction is 1%, and the total number of layers 
L

N = 10. 

    Dimensionless natural frequencies of multi-layer functionally graded GPL/polymer plates with 

different GPL distribution patterns are listed in Table 2 where the value in the bracket denotes the 

percentage frequency increase due to the addition of GPL reinforcing nanofillers. Fig. 3 investigates the 

effect of GPL weight fraction on the fundamental frequency change of the nanocomposite plates with 

different GPL distribution patterns. 

Table 2. Dimensionless natural frequencies of plates: Effect of GPL distribution patterns 

m, n Pure epoxy Pattern 1 Pattern2 Pattern 3 Pattern 4 

1, 1 0.0584 0.1216(108.2%) 0.1020(74.7%) 0.1378(136.0%) 0.1118(91.4%) 

2, 1 0.1391 0.2895(108.1%) 0.2456(76.6%) 0.3249(133.6%) 0.2673(92.2%) 

2, 2 0.2132 0.4436(108.1%) 0.3796(78.0%) 0.4939(131.7%) 0.4110(92.8%) 

3, 1 0.2595 0.5400(108.1%) 0.4645(79.0%) 0.5984(130.6%) 0.5013(93.2%) 

3, 2 0.3251 0.6767(108.2%) 0.5860(80.3%) 0.7454(129.3%) 0.6299(93.8%) 

3, 3 0.4261 0.8869(108.1%) 0.7755(82.0%) 0.9690(127.4%) 0.8287(94.5%) 

Note: The percentage value in parentheses denotes the relative frequency increase C M M( ) /ω ω ω− , in which 

Cω  and Mω  are natural frequencies with and without GPLs, respectively. 

    Numerical results show that the improvement in plate stiffness hence the fundamental natural 

frequency through the incorporation of GPLs is very impressive. For example, the fundamental natural 
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frequency of the plate with the addition of 1.2% weight fraction of GPLs is approximately 160% higher 

than that of the pristine epoxy plate. The frequencies also increase with GPL concentration increases no 

matter how they are distributed in the epoxy matrix. As can be observed from both Table 2 and Fig. 3, 

the GPL distribution pattern plays an important role in improving the dynamic characteristics of the 

plate. At the same amount of GPLs additives, distribution pattern 3 gives the highest fundamental 

frequency which is over 60% bigger than the lowest fundamental frequency produced by distribution 

pattern 2. This clearly indicates that dispersing more GPL nanofillers near the top and bottom surfaces 

of the plate where very high normal stress is located and much less content near its mid-plane where 

the normal stress is very small is the most effective way to strengthen plate stiffness for remarkably 

increased natural frequencies. This is due to the fact that such a distribution can make the best use of 

the high modulus GPL nanofillers therefore leads to the biggest increase in plate stiffness elements 
ij

A , 

ij
B , 

ij
D  and 

ij
K . 
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Fig. 3. Effect of GPL weight fraction on the percentage fundamental frequency change for GPL/epoxy 

plates with different distribution patterns 

    Fig. 4 presents the effects of the geometry and size of GPL nanofillers, in terms of length-to-
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thickness ratio GPL GPL/l h  and length-to-width ratio GPL GPL/l w , on dimensionless fundamental 

frequency of the GPL/epoxy nanocomposite plate, where the GPL length lGPL remains a constant. Note 

that lGPL/wGPL= 1 and lGPL/wGPL  1 correspond to a square shaped GPL and a rectangular shaped GPL, 

respectively. A significant increase in natural frequency is observed as the GPL GPL/l h ratio increases all 

the way up to lGPL/hGPL = 1000, followed by a slight further increase as lGPL/hGPL further increases. 

Since a higher lGPL/hGPL ratio virtually represents GPLs with less graphene layers, this observation 

clearly indicates that GPLs with fewer layers would be more effective in improving the natural 

frequencies. Results also show that, regardless of how GPLs are distributed, the plate reinforced with 

square GPLs (lGPL/wGPL= 1) has larger natural frequencies than that reinforced with rectangular GPLs 

(lGPL/wGPL= 2). In other words, GPLs with a larger surface area are better reinforcing nanofillers than 

their counterparts with a smaller surface area. This is because with the same amount of GPLs, a larger 

contact area between the polymer matrix and the GPLs provides better load transfer thus leading to 

higher structural stiffness. 
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Fig. 4. Effects of GPL length-to-thickness and length-to-width ratios on the percentage fundamental 
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frequency change for GPL/epoxy nanocomposite plates.  
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Fig. 5. Effect of total number of layers NL on the percentage fundamental frequency change for 

GPL/epoxy nanocomposite plates 

    Fig. 5 shows the relative frequency change of the GPL/epoxy plates with different total number of 

layers NL. As expected, the fundamental frequencies of the plates with GPL distribution pattern 1 are 

not affected by NL since they are homogeneous. For plates where GPLs are non-uniformly dispersed, 

their fundamental frequencies decrease as the total number of layer increases to NL = 10 ~15 then 

remain almost unchanged when NL is further increased for GPL distribution patterns 2 and 4. This trend, 

however, is reversed for GPL distribution pattern 3. Among the three non-uniform patterns considered, 

the fundamental frequency of the plate with GPL pattern 4 is least affected by the change in NL.  

4.2 Forced vibration 

    For the forced vibration analysis in this section, a triangular pressure pulse load shown in Fig. 6 is 

considered as an example which is expressed as 

 
(1 ),     0

( , , )
0,            0 and 

m p p

p

P T T T T
F X Y T

T T T

− ≤ ≤
= 

< >
 (50) 
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where 
m

P  is the peak pulse pressure, 
p

T  is the duration of the pulse loading. Then in Eq. (44), 

( )2

4
1 ,     0

0,                  0 and 

mn m
p p

mn

p

p
t t t t

Q mn

t t t

λ

π


− ≤ ≤

= 
 < >

,  in which ( ) ( ) ( )1 1 1 1
m n m n

mn
λ

+
= − − − − + − , 

M

m
m

P
p

E
= , and 

M

M

p

p

T E
t

h ρ
= . In what follows, it is assumed that the peak pulse pressure is 500 Pa

m
P k=  and the 

duration of the loading 
p

T  is 0.01s. 

 
Fig. 6. A triangular pressure pulse load 

 

    Convergence study is first conducted in Fig. 7 where the dimensionless central deflection responses 

of a GPL/epoxy nanocomposite plate (GPL distribution pattern 2, NL = 10) when M = N = 1 and M = N 

= 5 are compared. As can be observed, one term solution (M = N = 1) in double Fourier series (39)-(43) 

are sufficient to yield a convergent result. Since there are no existing results available in the open 

literature for the dynamic analysis of functionally graded GPL/polymer nanocomposite plates, our 

results are compared in Fig. 8 with the finite element (FE) results obtained by using commercial 

software package ABAQUS for the dimensionless central deflection response of a pristine epoxy plate 

and a nanocomposite plate with GPL distribution pattern 2. In the FE model, four-node conventional 

shell elements (S4R) with 40×40 mesh grid are used. Excellent agreement is achieved. 
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Fig. 7. Dimensionless central deflection response of a GPL/epoxy nanocomposite plate: Convergence 

study. 

0 5 10 15 20 25
-0.10

-0.05

0.00

0.05

0.10

0.15

D
im

en
si

o
n

le
ss

 c
en

tr
al

 d
ef

le
ct

io
n

Time (ms)

Pure epoxy:   Present     ABAQUS

Pattern 2:       Present     ABAQUS

 

 

Fig. 8. Dimensionless central deflection responses of a pristine epoxy plate and a GPL/epoxy 
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nanocomposite plate: Comparison with FE results 

Fig. 9 compares the dimensionless central deflection responses of a pure epoxy plate and GPL/epoxy 

nanocomposite plates with different GPL distribution patterns. Apparently, the pristine epoxy plate has 

much larger dynamic response than those reinforced by GPLs. This demonstrates the significant 

reinforcing effect of adding a very small amount of GPLs into the polymer matrix.  

Fig. 10 displays the effect of GPL weight fraction gGPL on the maximum deflection ratio C M/f f  for 

different distribution patterns in which Cf  and Mf  denote the maximum dynamic central deflection of 

the plates with and without GPLs, respectively. It is obvious that a smaller C M/f f  ratio corresponds to 

a stronger reinforcing effect by the incorporation of GPLs. A remarkable drop in dynamic deflection is 

seen as the weight fraction gGPL increases. For example, distributing only 1.0% weight fraction GPLs 

according to distribution pattern 3 can yield a significantly lower dynamic central deflection that is 

only 20% of that of the pure epoxy plate. 

Similar to the observations in free vibration analysis, results in Figs. 9 and 10 show that the way 

GPLs are distributed also plays an important role in the dynamic response of the plate. The symmetric 

distribution pattern 3 gives the lowest dynamic deflection, followed by uniform pattern 1, asymmetric 

pattern 4 then symmetric pattern 2 which is considered to be the most unfavorable way for dispersing 

GPLs. This again verifies that at the same amount of GPLs, dispersion of more GPL nanofillers near 

the top and bottom surfaces of plates is the most effective way to reduce the dynamic responses of 

plates. 
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Fig. 9. Dimensionless central deflection responses of GPL/epoxy nanocomposite plates.  
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Fig. 10. Effect of GPL weight fraction on C M/f f  for GPL/epoxy nanocomposite plates.  
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Fig. 11. Effects of GPL length-to-thickness and length-to-width ratios on C M/f f  for GPL/epoxy 

nanocomposite plates. 

    

    Fig. 11 studies the effects of GPL length-to-thickness ratio GPL GPL/l h  and length-to-width ratio 

GPL GPL/l w on the maximum dynamic deflection ratio C M/f f  for GPL/epoxy nanocomposite plates with 

different distributed patterns. Results show that compared with rectangular shaped GPLs ( GPL GPL/l w = 

2.0), square shaped GPLs ( GPL GPL/l w = 1.0) are better reinforcing nanofillers that lead to lower dynamic 

deflection. The maximum dynamic deflection is significantly reduced as GPL GPL/l h ratio increases, or, in 

other words, by using GPLs with fewer graphene single layers. However, a further increase in 

GPL GPL/l h when it goes beyond 1000 will bring a fairly slightly decreased dynamic deflection only.  

    The effect of the total number of layers NL on the maximum dynamic deflection ratio C M/f f  of 

GPL/epoxy nanocomposite plates is illustrated in Fig. 12. As can be observed, the dynamic deflection 
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increases with an increase in NL for both GPL distribution patterns 2 and 4 but becomes lower for 

distribution pattern 3. When NL ≥ 10~15, however, the dynamic deflection tends to be almost constant 

even when NL is further increased. For each distribution pattern, 10 layers are enough to obtain its 

corresponding converged result for the dynamic response. This is consistent with the free vibration 

results in Figure 5, both indicating that from manufacturing perspective, the multi-layer structure with 

10~15 layers stacked up would be accurate enough to approximate the desired continuous and smooth 

through-thickness change in GPL distribution which is impossible to be fabricated due to the constraint 

of current manufacturing technology in graphene-based nanocomposites. 
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Fig. 12. Effect of total number of layers NL on C M/f f  for GPL/epoxy nanocomposite plates. 

5. Conclusions 

Free and forced vibration behaviors of functionally graded multilayer GPL/polymer nanocomposite 

plates have been investigated within the framework of the first-order shear deformation theory. Navier 

solution based technique is employed to obtain the natural frequencies and dynamic response of simply 

supported plates subjected to a pulse loading. The effects of GPL distribution pattern, weight fraction, 

geometry and size as well as the total number of layers on the dynamic characteristics of the plates are 
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investigated in detail through a parametric study. It is found that (1) an addition of a very small amount 

of GPLs can significantly increase the natural frequencies and reduce the forced vibration response of 

the plates; (2) dispersing more square shaped GPLs consisting of fewer single graphene layers near the 

top and bottom surfaces of the plate is the most effective way to reinforce the plate for increased 

natural frequencies and remarkably reduced dynamic deflections; (3) A multilayer structure with 10~15 

individual layers stacked up can achieve the desired functionally graded compositional profile with 

sufficient accuracy yet relatively low manufacturing cost.  
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Appendix A 

The differential operators in Eqs. (31)-(35) are 
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Coefficients shown in Eq. (43) are 
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= − + −    

   
 

( ) ( )2

21 2 12 1 12 2 33 1 33 ,s mn I A I B I A I Bπ β α α= − + −    

( ) ( )2 2 2 2

22 2 22 1 22 2 33 1 33 ,s n I A I B m I A I Bπ β α α = − + −   

23 1 11,S
s I k nKπ β= −  

2 1 1
24 2 12 12 2 33 33 ,

I I
s mn I B D I B Dπ β

α α

   
= − + −    

   
 

2 2 2 2 21 1 1
25 2 22 22 2 33 33 11,S

I I I
s n I B D m I B D k Kπ β π

α α α

  
= − + − −   

  
 

31 0s = , 

32 0s = , 

( )2 2 2 2

33 11 22 ,Ss k n K m Kπ α β= +  

34 22 ,
S

s k mKπ=  

35 11,S
s k nKπ β=  

( ) ( )2 2 2 2

41 0 11 1 11 0 33 1 33 ,s m I B I A n I B I Aπ α β α = − + −   

( ) ( )2

42 0 12 1 12 0 33 1 33 ,s mn I B I A I B I Aπ β α α= − + −    



  

31 

 

43 0 22,
S

s I k mKπ=  

2 2 2 2 20 0 0
44 11 1 11 33 1 33 22 ,S

I I I
s m D I B n D I B k Kπ π β

α α α

  
= − + − +   

  
 

2 0 0
45 12 1 12 33 1 33 ,

I I
s mn D I B D I Bπ β

α α

   
= − + −    

   
 

( ) ( )2

51 0 12 1 12 0 33 1 33 ,s mn I B I A I B I Aπ β α α= − + −    

( ) ( )2 2 2 2

52 0 22 1 22 0 33 1 33 ,s n I B I A m I B I Aπ β α α = − + −   

53 0 11,S
s I k nKβπ=  

2 0 0
54 12 1 12 33 1 33 ,

I I
s mn D I B D I Bπ β

α α

   
= − + −    

   
 

2 2 2 2 20 0 0
55 22 1 22 33 1 33 11S

I I I
s n D I B m D I B k Kπ β π

α α α

  
= − + − +   

  
 


