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Abstract—Testing a program to confirm whether it consistently imple-
ments its requirements specification is a necessary but time-consuming
activity in software development. Automatic testing based on specifica-
tions can significantly alleviate the workload and cost, but faces a chal-
lenge of how to ensure that both the user’s concerns in the specification
and possible execution paths in the program are all covered. In this
paper, we describe a new method, called “Vibration-Method” or simply
“V-Method”, for automatic generation of test cases and test oracle from
model-based formal specifications, aiming to address this challenge.
The proposed method is suitable for testing information systems in
which rich data types are used. Supporting the principle of “divide and
conquer”, the method provides a specific technique for generating test
cases based on functional scenarios defined in the specification, test
case generation criteria, automatic test case generation algorithms, and
a well-defined mechanism for deriving test oracle. We elaborate on
the method by discussing how initial test cases can be automatically
generated, how additional necessary test cases are produced using the
“vibration” technique, and how a test oracle can be automatically derived
for a group of test cases. We also describe a controlled experiment
to evaluate the effectiveness of the method and discuss the important
issues in relation to the performance and applicability of the method.

Index Terms—Specification-based testing, Black-box testing, Func-
tional testing, Model-based testing, Automatic testing

1 INTRODUCTION

A successful software project must ensure the conformance
of the implemented program to the user’s (or client’s) re-
quirements specification [1]. Since the user generally pays
more attention to the behaviors of the program than its
internal structure, specification-based testing is a suitable
technique for checking the conformance [2], [3], [4]. Al-
though program correctness proof [5], [6] and software
model checking [7], [8] can be used for a similar purpose
and their application can be well justified especially for
safety-critical systems, they seem difficult to replace testing
to become the main stream of the technologies for verifi-
cation and validation in practice due to many limitations
and constraints [9], [10]. As a required function is usually
implemented by a single or a set of program paths in
the program [11], conformance testing should ideally cover
both the required functions in the specification and all of
the relevant program paths in the program. This, however,
poses a challenge.

In principle, specification-based testing requires test
cases to be generated only based on the specification, with-
out taking the program structure into account. This may
result in a situation where all of the required functions are
checked but some program paths are still untested. One
solution to this problem, which is commonly practiced, is
to carry out a structural testing in which test cases can be
deliberately generated to meet the path coverage [12], [13].
According to studies in the literature [14] and our own expe-
riences in collaboration with industry (e.g., The Nippon Sig-
nal Co., Ltd. in Japan), practitioners are extremely interested
in full automation of such a conformance testing since it can
significantly help us save budget, time, and avoid human
mistakes. In the meanwhile, the automation is also expected
to facilitate humans (e.g., the user, tester, developer) to easily
confirm whether every distinct, required function is tested
properly, because it is humans who have to take the ultimate
responsibility for the quality of the program. However, as is
well recognized by the research community [15], automatic
structural testing is usually difficult, especially for the code
with complex and recursive data and program structures.
Symbolic execution provides a limited solution for sim-
ple and small scale programs but faces serious obstacles
for complex and large scale programs [16]. Even if these
techniques are feasible in automatic test case generation for
some programs, they are always incompetent for automatic
derivation of test oracle, which is an indispensable part of
testing.

Another solution is to formalize the user’s requirements
specification to the level at which every required function
is defined precisely using a formal notation [17]. Thus, not
only can test cases be automatically generated [18], but a
well-defined test oracle for test result analysis can be au-
tomatically derived [19]. As formal specification techniques
have been used for requirements analysis or system design
by many companies according to the survey by Woodcock
et al. [20], research advancement in the area of automatic
specification-based testing will demonstrate additional val-
ues of formal specification in software development. Even
for software projects without using formal specification,
this approach can still be flexibly applied, as detailed in
Section 6. An interesting but open problem, however, is
how test cases can be automatically generated only based
on the specification to allow exercise of both all the required
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functions in the specification and all the relevant program
paths in the corresponding program.

In this paper, we put forward a functional scenario-based
vibration test case generation method as a solution for this
problem. We call the method Vibration-Method or simply V-
Method in order to reflect its main characteristic of “vibra-
tion” in test case generation. This method is suitable for
testing information systems in which rich data types are
used. The underlying principle of the V-Method is to convert
the formal specification into an equivalent disjunction of
functional scenarios and then generate adequate test cases
from each functional scenario in a “vibration” manner. Both
the test case generation and the “vibration” arrangement
are integral parts of our V-Method and they two work
together as a whole determines the effectiveness of the V-
Method. A functional scenario of an operation defines a
specific relation between its input and output. In the context
of a formal specification, a functional scenario is usually
expressed as a predicate expression, formed by taking both
the pre- and post-conditions into account, and expected to
define a required function in the user’s requirements speci-
fication (usually written in natural language). As explained
in Section 2.1, all functional scenarios of an operation can be
automatically derived using an algorithm we have proposed
in our previous work [11], [21]. The overall test strategy
advocated by our method is that the generated test cases
should cover all of the functional scenarios in the specifica-
tion and meanwhile aim to cover all of the representative
program paths (REP) in the program where the REP is a
subset of all the possible executable program paths that is
derived by unfolding loops as conditional statements. As
discussed in detail later, the method presents a theoretical
improvement of the commonly used disjunctive normal form
strategy in [2], and is applicable to any operation specified
in terms of pre- and post-conditions.

Specifically, we have made the following contributions in
this paper. Firstly, two new criteria for test case generation
on the basis of functional scenarios are proposed. One
requires that adequate test cases be generated to cover both
the defined functional scenarios in the specification and the
corresponding representative paths in the program, which
differs from existing specification-based testing approaches
reported in the literature [22], [23], [24], the other requires
the test cases to cover more details of each functional
scenario. These two criteria can be realized using both the
input-driven test generation strategy and the output-driven test
generation strategy. In the case of the input-driven strategy,
values for input variables (i.e., test data) are first selected
and then the expected values for output variables (i.e., the
expected result) are derived from the specification. In the
case of the output-driven strategy, the desirable values for
output variables are first selected and then the correspond-
ing test data for input variables will be generated for the
chosen expected result. The idea of taking the diversity
of outputs into account in test case generation has been
proposed by Matinnejad et al. in [25], [26], but in the existing
work there seems to lack a specific and well-defined way to
derive test cases from a given output value. Our method
has made a further improvement by providing a specific
and well-defined way based on the formal specification.
Secondly, a set of algorithms for automatic test case gen-

eration is described. A small part of the algorithms were
reported in our previous conference publication [24], but
many parts, such as algorithms dealing with sequence type
operators, composite type operators, and conjunctions, are
newly developed in this work. Thirdly, a “Vibration” step,
simply called V-Step, for heuristically generating test cases
with the aim to cover all of the REP is developed. An
initial idea of the method and a simple prototype tool was
presented at a workshop previously [27], but the idea has
been significantly developed into more mature strategy and
algorithms for test case generation in this work. Fourthly,
a mechanism for deriving test oracle for test result analysis
is presented on the basis of functional scenarios. Existing
similar approaches use the entire pre- and post-conditions
to form the test oracle for each test result analysis, but our
method uses only the relevant functional scenario, a part of
the pre- and post-conditions, for each test result analysis,
which is more efficient. Finally, a controlled experiment for
evaluating the performance of our method are conducted
on a Universal Card System developed by our research lab in
collaboration with industry.

The remaining part of this paper is organized as follows.
Section 2 describes our testing method by focusing the
discussion on strategy and criteria for test case generation
and the derivation of test oracle. Section 3 presents various
algorithms for test case generation from atomic predicates,
conjunctions, and disjunctions. Section 4 describes the ex-
periment on evaluating the effectiveness of our method
using mutation testing. Section 5 introduces related stud-
ies to discuss the state-of-the-art in the field of formal
specification-based testing and to indicate the position of
our contribution in this paper. Finally, in Section 6 we
conclude the paper and in Section 7 we point out future
research directions.

2 TEST STRATEGY AND CRITERIA

As mentioned previously, the overall test strategy of our
method is to automatically generate test cases from a formal
specification to cover all of the functional scenarios in the
specification and meanwhile attempt to achieve the path
coverage of the program as much as possible. Fig. 1 shows
the testing process using the strategy. The formal speci-
fication, which results from a formalization of the user’s
informal requirements specification (i.e., requirements spec-
ified in natural language), is taken as the very ground for
producing an equivalent functional scenario form (FSF) (dis-
junction of functional scenarios). The FSF is then treated as
an alternative representation of the specification and used as
the basis for test case generation. As a result, necessary test
cases and the corresponding test oracles are made available
for carrying out testing.

The result of the testing includes two parts: one is the
set of output values and the other is a set of traversed
paths. On the basis of the test oracle and the test result,
analysis for determining whether errors are found can then
be performed automatically. Also, the information of the
traversed paths will be used in decision-making for further
testing.

In this method, the concept of functional scenario plays
a fundamental role and most discussions in this paper
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depend on it. The concept was first proposed in our ICFEM
2005 article [28] and finalized in our another publication on
specification-based program inspection [11], but how it can
be used for test case generation was not discussed. For the
purpose of this paper, we first introduce the concept in the
manner suitable for testing and then describe the overall
testing strategy based on it.

2.1 Functional Scenario - Background

Conceptually, the specification of an operation S is denoted
as S(Siv; Sov)[Spre; Spost], where Siv is the set of all the
input variables whose values are not changed by the opera-
tion, Sov is the set of all the output variables whose values
are produced or updated by the operation, and Spre and
Spost are the pre- and post-conditions of S, respectively.
For the sake of simplicity, we assume that the related in-
variant, say inv, on state variables has been incorporated
into Spre and Spost properly (as conjunction of inv and the
original pre- or post-condition), and both the pre- and post-
conditions do not contain quantified expressions.

In addition, to write pre- and post-conditions of op-
erations, we adopt the Structured Object-Oriented Formal
Language (SOFL) [29], which properly integrates the well-
known formal notation VDM-SL [30] and data flow dia-
grams. Our discussion is not dependent on any specific
formal notation, but we need to choose one for expressing
the ideas concretely in the discussion. We use SOFL partly
because of our expertise and partly because its syntax is
comprehensible to readers with experience in programming
languages. In the post-condition, we use ~x and x to rep-
resent the value of state (or external) variable x in pre-
state and in post-state of the operation, respectively. Thus,
~x serves as an actual input variable while x is treated as
an output variable of the operation; that is, ~x 2 Siv and
x 2 Sov .

Let P be a program implementing S. To ensure that P
implements S correctly, the obligation to be discharged is

8 ~�2� � Spre( ~�)) Spost( ~�; P ( ~�)) (1)
where � denotes all the possible states of S. In this quan-
tified expression, S is perceived as an abstraction of P ,
which generally defines a relation between the initial state
~� before the execution of P and the final state � (= P (~�))
after the execution of P . P is treated as a function, mapping
the initial state (the pre-state) ~� to the final state (the post-
state) �. Condition (1) requires that, for any initial state ~�
of the program satisfying the pre-condition Spre, the final

state � resulting from the execution of P satisfies the post-
condition Spost.

Theoretically, the verification of condition (1) using test-
ing requires an exhaustive testing, trying every possible initial
state in the domain of operation P , but as is well-known,
this is usually impossible in practice because of the state
explosion problem and time constraints, although it may
be used for programs whose scope and scale are small. As
briefly explained in the previous section, our method aims
to generate adequate test cases from specification S to cover
all of the defined functions that reflect the user’s distinct
functional requirements. Such a function can actually be rep-
resented, formally, by a functional scenario defined below.

Definition 1 (functional scenario). Let Spost � (G1 ^D1) _
(G2 ^D2) _ � � � _ (Gn ^Dn), where each Gi (i 2 f1; : :
:; ng) is a predicate called a guard condition that contains
no output variable in Sov and Di a defining condition that
contains at least one output variable in Sov but no guard
condition. Then, a functional scenario of S is defined as a
conjunction Spre ^ Gi ^ Di, and the expression (Spre ^
G1 ^D1)_ (Spre ^G2 ^D2)_ � � � _ (Spre ^Gn ^Dn) is
called a functional scenario form (FSF) of S.

We treat a conjunction Spre ^ Gi ^ Di as a functional
scenario (FS) because it defines a distinct function: when
Spre ^ Gi is satisfied by the initial state (or intuitively by
the input variables), the final state (or the output variables)
is defined by the defining condition Di. The separation
of the defining condition from the conjunction of the pre-
condition and the guard condition will facilitate us in test
data generation based on the conjunction and in forming
test oracle based on both the conjunction and the defining
condition. Note that in the pre- and post-conditions of a
specification, we treat both a relation (e.g., x > y) and its
negation as an atomic predicate. Any pre-post specification
can be translated into an equivalent FSF using a well-
established algorithm whose content and implementation
are described in our previous publications [11] and [21],
respectively.

Definition 2 (complete specification). Let (Spre^G1^D1)_
(Spre ^ G2 ^ D2)_ � � � _ (Spre ^ Gn ^ Dn) be a FSF of
operation specification S. Then, S is said to be complete
if and only if the condition G1 _ G2 _ � � � _ Gn , true
holds.

Note that the definition of completeness of an opera-
tion specification here may differ from the conventional
understanding that requires the specification to define all
of the user’s requirements. Rather, our definition requires
that any input satisfying the pre-condition must satisfy one
of the guard conditions (e.g., G1), thus guaranteeing that
the output of the operation can be defined by the corre-
sponding defining condition (e.g., D1), provided that all of
the defining conditions are satisfiable. As we will discuss in
Section 4.5 later, the completeness of a specification impacts
the effectiveness of our testing method.

Example 1. Let us take an operation known as
Check_Triangle as an example to explain these basic
notions. This operation takes three sides of a triangle
as input and determines the type of the triangle, in-
cluding equilateral triangle, isosceles triangle, other triangle,
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and non-triangle. Its formal specification written in the
SOFL language is given below where the process can be
understood as an operation in general sense.

process Check_Triangle(d1; d2; d3 : int)
t_type : string

pre true
post (d1 = d2 and d2 = d3 and

t_type = "equilateral triangle") or
((d1 = d2 or d1 = d3 or d2 = d3) and

t_type = "isosceles triangle") or
(d1 6= d2 and d1 6= d3 and d2 6= d3 and

t_type = "other triangle") or
((d1 � 0 or d2 � 0 or d3 � 0) and

t_type = "non-triangle")
end_process
In the context of the notation S(Siv; Sov)[Spre; Spost], the

four parts of the operation Check_Triangle are as follows:
Check_Triangleiv = fd1; d2; d3g
Check_Triangleov = ft_typeg
Check_Trianglepre = true
Check_Trianglepost = (d1 = d2 and ::: (omitted for

brevity).
A functional scenario form can be derived from this

specification, which includes the following four functional
scenarios:

(1) G1 : d1 = d2 and d2 = d3
D1 : t_type = "equilateral triangle"
FS1 : G1 and D1

(, Check_Trianglepre and G1 and D1)
(2) G2 : (d1 = d2 or d1 = d3 or d2 = d3)

D2 : t_type = "isosceles triangle"
FS2 : G2 and D2

(3) G3 : d1 6= d2 and d1 6= d3 and d2 6= d3
D3 : t_type = "other triangle"
FS3 : G3 and D3

(4) G4 : (d1 � 0 or d2 � 0 or d3 � 0)
D4 : t_type = "non-triangle"
FS4 : G4 and D4

2.2 Test Case Generation Criteria

Before discussing criteria for test case generation, we need
to clarify the basic concepts, such as test data, test case, test
set, test suite, test oracle, and test condition of a functional
scenario, because some of them are used in the literature
with slightly different meanings.
Definition 3 (test data). A test data is an assignment of

values to all of the input variables from their types.

Definition 4 (test case). A test case is a test data to-
gether with the expected values for the output variables.
Let Siv = fx1; x2; :::; xng and Sov = fy1; y2; :::; ymg
be the set of all input variables and output variables
of operation S, respectively. Let Type(z) denotes the
type of input variable or output variable z, where
z 2 fx1; :::; xn; y1; :::; ymg. Then, a test case, denoted by
tc, is a mapping from the union of Siv and Sovto the set
V alues:
tc : Siv [ Sov ! V alues
tc(z) 2 Type(z),

where V alues = Type(x1)[ � � � [Type(xn)[Type(y1)[ � �
� [ Type(yn).

A test case is usually expressed as a set of pairs of input
variables or output variables with their value. For example,
tc = f(x1; 5); :::; (xn; 20); (y1; 15); :::; (ym; 60)g is a possible
test case.

Definition 5 (test set). A test set is a collection of test cases,
and is usually expressed as a set of sets of pairs. A test
suite is a test set expected to run for a specific purpose.

Definition 6 (test condition). Let Spre^G^D be a functional
scenario of operation S. Then, the conjunction of Spre^G
is called test condition of the functional scenario.

Since the test condition Spre ^ G contains only input
variables of the operation, test data (or test cases without
expected result) for checking whether defining condition D
is implemented correctly will be produced only based on the
test condition. The defining condition will be used to form
a test oracle for test result analysis, as discussed in Section
2.3.

Definition 7 (restricted domain). The restricted domain of
operation S is the subset of the domain of the operation
in which every value satisfies the pre-condition of the
operation specification.

The above notions are concerned with the specification,
but we also need some fundamental concepts on programs
in the proposed criteria for test case generation below. They
are defined next, respectively.

Definition 8 (program). A program is a five-tuple
(S0; SN;CN;R; T ), where S0 denotes the starting node,
SN the set of statement nodes, CN the set of condition
nodes, R the relation between nodes, and T the set
of terminating nodes, and they satisfy the following
conditions:
(1) S0 2 SN [ CN
(2) R : (SN [ CN)� (SN [ CN)

8n2CN9!n1;n22SN[CN � n1 6= n2 ^ (n; n1) 2 R ^
(n; n2) 2 R
(3) T � SN

A program can be represented as a semantically equiv-
alent graph that is composed of the five elements S0; SN;
CN; R; T , and satisfies the above three conditions. Each
statement in the program, including empty statement (de-
noted by skip), is represented by a node in SN called a
statement node. Each condition (a predicate) is represented
by a node in CN called a condition node. The connections
between the nodes (including both statement and condition
nodes), which reflect the control flows between statements,
are represented by relation R. The starting node S0 denotes
the very first statement or condition of the program. A
terminating node in T represents a statement that must be
executed lastly in an execution of the program. A program
is also characterized by the fact that every condition node is
connected to two unique other nodes each of which is either
a statement node or condition node as defined in condition
(2) above.

Definition 9 (program path). Let P = (S0; SN;CN;R; T ) be
a program. A program path p of P is a sequence of nodes
[S0; n1; n2; :::; nm], where nm 2 T , and we let E(p) =
f(S0; n1); (n1; n2); :::; (nm�1; nm)g.
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A program path is a sequence of nodes, beginning with
the starting node of the program and ending with one of the
terminating nodes. The path can also be viewed as a relation
composed of all the edges of the path. To avoid any possible
confusion, we use E(p) to represent the corresponding
relation of path p.

Definition 10 (representative program paths). Let P =
(S0; SN;CN;R; T ) be a program. Then, we use Rpp(P )
to denote a set of representative program paths of P that
must satisfy the following two conditions:
(1) 8e2R9p2Rpp(P ) � e 2 E(p)
(2) 8p2Rpp(P ) � :9p12Rpp(P ) � E(p) � E(p1) .

Rpp(P ) does not represent a unique set of representative
program paths of P , according to the definition, but it
contains all of the program paths that cover all of the control
flow edges of P , as indicated in condition (1), and does
not contain different program paths that overlap control
flow edges in their corresponding relations, as implied by
condition (2).

In this paper, we always use Rpp(P ) to denote the set of
representative program paths of interest that is determined
based on the requirement of testing.

Definition 11 (traversed path). Let P = (S0; SN;CN;R; T )
be a program and p be a program path of P . When P is
executed, if all of the nodes of p are executed (in the case
of a statement) or evaluated (in the case of a condition)
in the order of their appearance on the path, we say that
p is traversed.

With the definitions of the above concepts, we can now
define criteria for test case generation next.

Criterion 1: Let P be a program implementing operation
specification S; (Spre ^G1 ^D1)_ (Spre ^G2 ^D2)_ � � � _
(Spre ^Gn ^Dn) be an FSF of S, where (n � 1). Let T be a
test set generated from S for testing P . Then, T is expected
to satisfy the following four conditions:
(1) 8i2f1;:::;ng9tc2T � Spre(tc) ^Gi(tc)
(2) :(G1 _G2 _ � � � _Gn , true))

9tc2T � Spre(tc) ^ :(G1 _G2 _ � � � _Gn)(tc)
(3) 9tc2T � :(Spre(tc))
(4) 8p2Rpp(P )9tc2T � traversed(p; tc) .

We call this criterion scenario-path coverage (SPC). The cri-
terion suggests that a generated test set T cover all of
the functional scenarios in the specification and all of the
representative paths in the program. Specifically, the test
set T is expected to meet four conditions: (1) for each
functional scenario, there must exist a test case in T that
satisfies the test condition of the functional scenario, (2) if
the disjunction of all the guard conditions does not cover the
entire restricted domain of the operation (i.e., the disjunction
is not equivalent to true), there must exist a test case in
T that satisfies the negation of the disjunction of all the
guard conditions, (3) there must also exist a test case that
violates the pre-condition, and (4) for each representative
program path, there must exist a test case that makes the
path traversed (denoted by traversed(p; tc)).

This test criterion is consistent with the well known
criteria reported in the literature. Conditions (1) and (2)
together reflect the equivalence partitioning technique for
generating test cases [31], [32] on the basis of precisely

defined test conditions of functional scenarios. Condition
(3) does not help determine whether an error is found by
the test case because the semantics of the pre-post style
specification in SOFL allows any behaviors of the imple-
mented program when the pre-condition is violated, which
is consistent with the well-established refinement theory
[33], but it can play a similar role to that of the robustness
testing technique [34] and help the tester or developer judge
whether the program’s behavior is acceptable for the user in
this circumstance. Condition (4) corresponds to simple path
coverage testing [32].

Another criterion that requires the generated test set to
cover more detailed parts of a test condition allows more
detailed situations to be examined in testing.

Criterion 2: Let test set T satisfy Criterion 1; Spre ^ G
be the test condition of the functional scenario Spre ^G^D
in the FSF of operation S; and P1 _ P2_ � � � _ Pm be a
disjunctive normal form (DNF) of Spre ^ G. Then, T must
also satisfy the condition
8P2fP1;P2;:::;Pmg9tc2T � P (tc) .
This criterion imposes further partition of the sub-

domain defined by the test condition of a functional scenario
involved in Criterion 1. Specifically, it requires that for
each constituent clause of the DNF of the test condition,
T contains a test case satisfying it. This means that at least
one test case from each partitioned area of the sub-domain is
required to select for the testing. Assuming that clause P is
the conjunctionQ1^Q2^ ��� ^Qw, whereQj (j = 1; :::; w) is
an atomic predicate or its negation, the predicate P (tc) will
be equivalent to Q1(tc) ^ Q2(tc)^ � � � ^ Qw(tc). Since any
predicate expression can be converted into an equivalent
DNF, this criterion is applicable to any test condition of any
functional scenario.

Similarly to existing criteria for testing case generation
(e.g., branch coverage, path coverage), the two criteria above
show a guideline for generating adequate test cases, that is,
they tell when test case generation should stop. Due to many
different reasons, however, these criteria may not always be
guaranteed to satisfy in practice (e.g., infeasible paths, time
constraints).

Example 2. Let us take an operation called Pur-
chase_Ticket_From_Card, PTFC for short, as an example
to illustrate the meaning of Criterion 1. PTFC is a sub-
operation of the high level operation PurchaseT icket in
the Universal Card System used in our experiment that is
described in Section 4. Its formal specification fits for our
purpose, and is given below in SOFL.

process PTFC(status : string; fare : nat0)
actual_fare : int

ext wr card: Card
pre fare � 0:5 <= ~card:buffer
post case status of
"Infant" –> actual_fare = 0 and card = ~card;
"Student" –> actual_fare = fare� fare � 0:5 and
card =
modify(~card, buffer –> ~card:buffer�actual_fare);
"Normal" –> actual_fare = fare and
card =
modify(~card, buffer –> ~card:buffer�actual_fare);
"Pensioner" –> actual_fare = fare� fare � 0:3 and
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card =
modify(~card, buffer –> ~card:buffer�actual_fare);
"Disable" –> actual_fare = fare� fare � 0:3 and
card =
modify(~card, buffer –> ~card:buffer�actual_fare);
default –> actual_fare = �1 and card = ~card
end_process

where nat0 is the type of natural numbers including zero
(i.e., f0; 1; 2; 3; :::g), and the composite typeCard is declared
as follows:
Card = composed of

id: string
buffer: nat0
:::

end;
A card contains several fields, including an id, a buffer con-
taining the current amount of money available for use, and
other fields, which are omitted for brevity without affecting
the understanding. The specification states that if half of
the input fare is not greater than the buffer of the card,
when the input status is one of the five situations "Infant",
"Student", "Normal", "Pensioner", and "Disable", the out-
put actual_fare is properly calculated and the card is prop-
erly updated by reducing the actual_fare from its buffer
(expressed by the modify operator) whenever applicable;
otherwise, the actual_farewill be given a special value �1,
which is denoted by actual_fare = �1, indicating that no
ticket can be purchased, and the card remains unchanged.
The four parts of the operation PTFC are as follows:
PTFCiv = fstatus; fare; ~cardg
PTFCov = factual_fare; cardg
PTFCpre = fare � 0:5 <= ~card:buffer
PTFCpost = case status of ::: (omitted for brevity).
Applying the algorithm reported in our previous work

[11], a functional scenario form can be derived from this
specification, which includes the following six functional
scenarios:

(1) fare � 0:5 <= ~card:buffer and status = "Infant"
and actual_fare = 0 and card = ~card

(2) fare � 0:5 <= ~card:buffer and status = "Student"
and actual_fare = fare� fare � 0:5 and
card =
modify(~card, buffer –> ~card:buffer�actual_fare)

(3) fare � 0:5 <= ~card:buffer and status = "Normal"
and actual_fare = fare and
card =
modify(~card, buffer –> ~card:buffer�actual_fare)

(4) fare � 0:5 <= ~card:buffer and
status = "Pensioner" and
actual_fare = fare� fare � 0:3 and
card =
modify(~card, buffer –> ~card:buffer�actual_fare)

(5) fare � 0:5 <= ~card:buffer and status = "Disable"
and actual_fare = fare� fare � 0:3 and
card =
modify(~card, buffer –> ~card:buffer�actual_fare)

(6) fare � 0:5 <= ~card:buffer and
status notin f"Infant";"Student";"Normal";

"Pensioner";"Disable"g and
actual_fare = �1 and card = ~card

In scenario (1), for example, fare � 0:5 <= ~card:buffer
is PTFCpre, status = "Infant" the guard condition, and
actual_fare = 0 and card = ~card the defining condition,
to define the two output variables actual_fare and card.
The rest of the functional scenarios can be interpreted simi-
larly.

Applying Criterion 1 to the six functional scenarios
above, we generate a test set containing seven test cases
that satisfy the six functional scenarios and the negation of
the pre-condition, respectively, as shown in Table 1. This
test set is generated by first selecting test data for the
input variables fare, status, and ~card based only on the
test condition of each functional scenario, and then derive
the corresponding expected values for the output variables
actual_fare and card based on the defining condition of
the functional scenario.

Let operation PTFC be implemented as a Java method
in a class called PurchaseT icket. The five status are stored
in an array called statusTable and the corresponding dis-
count percentages (e.g., 0.3 or 30%) are stored in another
array called discountPercentageTable. The method searches
for the input status in statusTable, and once it is found,
the corresponding discount percentage in discountPercent-
ageTable will be applied properly in calculating the ac-
tual_fare. The details of the Java code is given in Fig. 2 (a)
and its flowchart is depicted in Fig. 2 (b) for readability. In
the flowchart, each statement or decision is attached with
a number, thus program paths can be formed in terms of
the step numbers for the convenience of discussions in this
paper. The program contains three REPs named p1, p2, p3,
and another path p4: p1 = [1; 2; 3; 4; 5; 6; 7; 8; 9; 4; 10], p2 =
[1; 2; 3; 4; 5; 9; 4; 5; 6; 7; 8; 9; 4; 10], p3 = [1; 2; 3; 4; 5; 9; 4; 10],
and p4 = [1; 2; 3; 4; 10]. Here p4 is not executable because the
decision in step 4 can never be false in the first evaluation.

The test set in Table 1 satisfies Criterion 1, because the
test cases cover both all of the functional scenarios and all
of the three executable representative program paths. In
particular, it is worth mentioning that test case (7) helps find
a bug contained in the decision of step 4, notFound jj i < 5,
because it causes the “out of array boundary” error when
using test case (7). The correct decision should be notFound
& i < 5.

2.3 Test Result Analysis

Test result analysis aims to determine whether a test has
found any errors or not. It needs not only the test case and
the corresponding test result, but also a test oracle. In our
V-Method, a test oracle is a condition specific to a functional
scenario that can tell whether a test case generated from the
scenario finds errors or not. In general, one test oracle is de-
rived from one functional scenario and test oracles derived
from different functional scenarios are usually different.

Definition 12. (test oracle) Let f � Spre ^ G ^ D be a
functional scenario of operation specification S and P be
a program implementing S. Let t be a test case generated
from f and r be the result of executing program P using
t. Then, an error in P is found using t if the following
condition holds:
Spre(t) ^G(t)) :D(t; r)
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TABLE 1
Example of test set satisfying Criterion 1

No. of Input variables Output variables Covered functional scenarios or
test cases fare status ~card (expected results) negation of pre-condition and paths

(1) 380 "Infant" ~card:buffer= 1500 actual_fare = 0; card:buffer= 1500 Scenario (1) and p1
(2) 1200 "Student" ~card:buffer= 2300 actual_fare = 600; card:buffer= 1700 Scenario (2) and p2
(3) 530 "Normal" ~card:buffer= 3800 actual_fare = 530; card:buffer= 3270 Scenario (3) and p2
(4) 960 "Pensioner" ~card:buffer= 4300 actual_fare = 672; card:buffer= 3128 Scenario (4) and p2
(5) 130 "Disable" ~card:buffer= 4100 actual_fare = 91; card:buffer= 4009 Scenario (5) and p2
(6) 240 "Superman" ~card:buffer= 5205 actual_fare = �1; card = ~card Scenario (6) and p3
(7) 1500 "Anything" ~card:buffer= 1200 actual_fare = �1; card = ~card negation of pre-condition and p3

class PurchaseTicket {
Card card;
String statusTable [5];
double discountPercentageTable [5];
...
public int PTFC(String status, int fare) {
int actual_fare = 1;
boolean notFound = true;

for (int i = 0; notFound || i < 5; i++) {
if (statusTable[i].equals(status) {
actual_fare = fare –fare * discountPercentageTable [i];
card.buffer = card.buffer –actual_fare;
notFound = false;
}

}
return actual_fare;

}

actual_fare = 1

notFound = true

i = 0

notFound ||

i < 5

statusTable[i].equals
(status)

Actual_fare = fare –fare *

discountPercentageTable [i]

card.buffer = card.buffer –

actual_fare

notFound = false

return actual _fare

(a)

(b)

1

2

3

4

5

6

7

8

10

T F

T F

i++

9

Fig. 2. A program intended to implement the specification of operation
PTFC

This condition states that for a test case t satisfying the
test condition Spre^G, if the execution result r of P does not
satisfy the defining condition D (together with t), including
the situation where D(t; r) is undefined, it implies that P
contains an error, since a correct implementation of the
functional scenario must ensure that for any input satisfying
the test condition, the defining condition will be met by the
output of the program. If specification S has n functional
scenarios, n (specific) test oracles can be derived.

Let us take the operation PTFC given in Section 2.2
for example. For brevity, we concentrate only on functional
scenario (6) to explain how the test oracle can be used for

test result analysis. Applying Definition 12, we can form
the following test oracle for tests based on the functional
scenario:
fare � 0:5 <= ~card:buffer ^ status notin

f"Infant";"Student";"Normal";"Pensioner";"Disable"g
) :(actual_fare = �1 and card = ~card) .

Test case (6) in Table 1 is generated based on functional
scenario (6). When it is used to run the program in Fig. 2,
an “out of array boundary” error occurs, which implies that
the output variable actual_fare and the external variable
card are both undefined. This makes the defining condition
(actual_fare = �1 and card = ~card) undefined and
ultimately makes the implication evaluate to undefined as
well, according to the extended three-value logic adopted
in VDM and SOFL. The undefined situation is treated as
a special "value", written as nil, and different from true.
According to Definition 12, the test oracle is not satisfied
and therefore the test has found an error in the program,
which is in the decision notFound jj i < 5, as discussed in
Section 2.2.

The advantages of our approach to defining the test or-
acle are three-fold. Firstly, a test oracle can be automatically
derived from one functional scenario and can be automati-
cally analyzed for a definitive decision on errors. Secondly,
the analysis of the test oracle involves only one functional
scenario rather than the whole post-condition, which is
likely to enhance the efficiency of the analysis system sig-
nificantly, as compared with the other specification-based
approaches that usually involve the whole post-condition
for evaluating the test oracle. Finally, the analysis of each test
oracle allows the tester to concentrate only on one functional
scenario that usually corresponds to a single detailed use
case of the system, therefore is helpful for the tester to
explain the meaning of each test to the user (or client) in
practice.

3 TEST CASE GENERATION ALGORITHMS

The criteria described previously define the conditions for
generating adequate test cases based on predicate expres-
sions, but how the test case can actually be produced still
remains unaddressed.

In this section, we take a bottom-up approach to present
algorithms for automatically generating test sets from var-
ious levels of predicate expressions, starting from atomic
predicates, through conjunctions, and finally completing
with the discussion on disjunctions. A few algorithms for
test case generation based on numeric types (e.g., integers
and real numbers) have been used and tested in a prototype
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tool reported in our previous work [35], but most of the
other algorithms introduced in this section are implemented
in our latest prototype tool that is briefly introduced in
Section 3.7. For the sake of readability, the algorithms will be
presented in an abstract manner, focusing on the elaboration
on their essential idea and rationale rather than concrete
steps as required in code.

Since various data types are provided in SOFL, as well
as in other model-based formal notations, such as VDM-
SL [36], Z [37], and Event-B [38], we need algorithms to
deal with the test set generation from every type of atomic
predicate (e.g., atomic predicate of numeric type, set type,
sequence type, composite type, and map type). For the sake
of space, we only choose the commonly used numeric type,
set type, sequence type, and composite type as examples
to show the underlying principle of test case generation.
Extension to other types can be done by following the same
principle.

Note that when the algorithms are applied to generate
test cases, we treat input variables and output variables
equally because all of them need values in the test cases
generated. Of course, if an expected test result is specifically
required, the value of output variables can first be deter-
mined, which will convert the entire functional scenario into
a predicate formula containing only input variables. Then,
the predicate is used to generate values for input variables
in the test case.

3.1 Generation from Atomic Predicates

Let Q(x1; x2; :::; xq) be an atomic predicate mentioned in
Criterion 2 above. The variables x1; x2; :::; xq are input or
output variables, which are called i-o variables, of the related
operation but may be part of all the i-o variables x1; x2; :::;
xn where n � q. The goal of test case generation from the
predicate is to choose such a value for each variable that
will satisfy the predicate. To fulfill this goal efficiently, the
algorithms for test case generation to be discussed in this
section must take the structure of the predicate into account.
Since the algorithms vary depending on the number of the
variables involved and the form of the predicate, we divide
the discussion into the following three situations:

(a) Only one i-o variable (i.e., q = 1) is involved and
Q(x1) has the format x1	E, where 	 2 f=; >;
<; >=; <=; <>g is a relational operator and
E a constant. The operator >= means “greater
than or equal to”, <= means “less than or equal
to”; <> means inequality; and the others are
commonly used operators.

(b) Only one i-o variable is involved and Q(x1) has
the format E1 	 E2, where E1 and E2 are both
arithmetic expressions that involve x1.

(c) More than one i-o variable is involved andQ(x1;
x2; :::; xq) has the format E1 	 E2, where E1
and E2 are both arithmetic expressions possibly
involving all the variables x1; x2; :::; xq .

Generating a test case to satisfy x1 	 E in case (a) is
rather simple, but generating a test case to satisfy E1 	 E2
in case (b) becomes a little more complicated: it needs first
to transform the format E1 	 E2 to the format x1 	 E, and

then to apply the algorithms for case (a). Generating a test
case to satisfy E1 	 E2 in case (c) requires more actions:

(1) Randomly assigning values from appropriate
types to the i-o variables x2; :::; xm to transform
the format into the format E1 	 E2 in case (b).

(2) Applying the algorithms for case (b) to the de-
rived format E1 	 E2.

The algorithms for generating test cases from a predicate
in case (a) are fundamental and essential because the al-
gorithms dealing with cases (b) and (c) are all dependent
on them in the manner mentioned previously. Therefore,
we only discuss the details of the algorithms dealing with
predicates in case (a) below.

Algorithm 1: Let q = 1 and Q(x1; x2; :::; xq) � x1 	 E,
where 	 2 f=; >; <; >=; <=; <>g and E is a constant.
Then, a set of algorithms for generating test cases to satisfy
Q(x1; x2; :::; xq) is given in Table 2, where � is a positive
integer, which can be produced randomly, and “:=” denotes
the assignment operator. Note that each of these algorithms
can be used independently.

According to Table 2, when operator 	 is equality sym-
bol “=”, a test data for variable x1 can be produced by the
assignment x1 := E, meaning that the result ofE is assigned
to x1, whilst the remaining input variables x2; x3; :::; xq are
assigned any value from their type. When operator 	 is
“>=”, “<>” or “>”, a test data for variable x1 can be
produced by the assignment x1 := E + �, whilst the re-
maining input variables x2; x3; :::; xq are assigned any value
from their type, where � denotes 1 or any positive integer.
When operator 	 is “<=” or “<”, a test data for variable
x1 can be generated by the assignment x1 := E � �, whilst
the remaining input variables x2; x3; :::; xq are assigned any
value from their type. Any of these algorithms ensures that a
test case generated from Q(x1; x2; :::; xq) satisfies predicate
Q.

It is worth noticing that the algorithms above are suitable
for dealing with expressions of numeric types, but if the
expression involves operators on compound types, such as
set type, we need another group of algorithms for test case
generation. These algorithms are summarized in Algorithm
2 below.

Algorithm 2: Let q = 1 and Q(x1; x2; :::; xq) � E(x1),
where x1 is a variable denoting a single element of a set, or a
set of elements, E(x1) is an expression involving x1 and an
operator defined on set types, such as inset (membership),
notin (non-membership), card (cardinality), union (union
of sets), inter (intersection of sets), diff (difference between
sets), subset (subset), psubset (proper subset), and power
(power set). Then, the goal of the algorithm for generating a
test case from each kind of atomic predicate is to choose a set
value that satisfies the predicate. Table 3 shows the details
of such algorithms in which E1 and E2 denote two specific
sets, get(E1) represents an element obtained from set E1 if
E1 is a non-empty set (otherwise, it becomes undefined),
and w is a natural number.

In this table, x1 in Algorithms (1) and (2) denotes an
element of a set (e.g., E1), while in the rest of algorithms
it denotes a set whose type is set of T where T is the
element type already defined. Algorithm (1) shows that a
test case for x1 can be generated by assigning any value
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TABLE 2
Algorithms for case (a)

No. of 	 Algorithms of Algorithms of test case
algorithms test case generation for the remaining

generation for x1 variables (i = 2;:::; q)
(1) = x1 := E xi := any 2 Type(xi)
(2) >=, <> or > x1 := E + � xi := any 2 Type(xi)
(3) <= or < x1 := E � � xi := any 2 Type(xi)

TABLE 3
Algorithms for test case generation from set type expressions

No. of Expression E(x1) Algorithms of Algorithms of
algorithms test case generation test case generation

for x1 for the remaining
variables
(i = 2;:::; n)

(1) x1 inset E1 x1 := get(E1), E1 is non-empty xi := any 2 Type(xi)
(2) x1 notin E1 x1 := get(Type(x1) n E1) xi := any 2 Type(xi)
(3) card(x1) = w x1 := fa1; a2; :::; awg; xi := any 2 Type(xi)

where x1 : set of T; and
ak 2 T; k = 1; 2; :::; w

(4) union(x1; E1) = E2 x1 := E2nE1 xi := any 2 Type(xi)
(5) inter(x1; E1) = E2 x1 := E2 xi := any 2 Type(xi)
(6) diff (x1; E1) = E2 x1 := E1 union E2 xi := any 2 Type(xi)
(7) subset(x1; E1) x1 := E1 xi := any 2 Type(xi)
(8) psubset(x1; E1) x1 := E1nfget(E1)g xi := any 2 Type(xi)
(9) x1 = E1 x1 := E1 xi := any 2 Type(xi)
(10) x1<> E1 x1 := fget(Type(x1))gn E1 xi := any 2 Type(xi)
(11) power(x1) = E1 x1 := getLargest(E1) xi := any 2 Type(xi)

from E1 (as indicated by the assignment x1 := get(E1)).
Algorithm (3) indicates that a test case for set x1 to satisfy
the condition card(x1) = w is to randomly selectw elements
from its element type T . Algorithm (4) states that a test
case for set x1 to satisfy the condition union(x1; E1) = E2
(the union of x1 and E1 is equal to E2) is to assign the
difference set between E2 and E1 (i.e., x1 := E2nE1). The
other algorithms in the table can be similarly interpreted,
we therefore do not elaborate on them for brevity.

Note that the algorithms in the table are suitable for
dealing with expressions involving only one input variable
x1. However, if more than one input variable is involved, a
similar measure to that of Algorithm 1 can be taken.

Similarly, a group of algorithms are designed to deal
with expressions involving operators on sequences. A se-
quence is a listing of ordered elements in which the du-
plication of elements is allowed. A sequence type contains
a set of sequences; it can be declared in the format seq of
T , where T , called element type, can be any type previously
defined. These algorithms are summarized in Algorithm 3
below.

Algorithm 3: Let q = 1 and Q(x1; x2; :::; xq) � E(x1),
where x1 is a variable denoting a sequence of elements,
E(x1) is an expression involving x1 and an operator defined
on sequence types, such as len (length of sequence), inds
(indexes set of sequence), elems (element set of sequence),
and conc (concatenation of sequences). Then, the algorithm
for generating a test case from each kind of atomic predicate
aims to find a sequence value that satisfies the predicate.
Table 4 shows a set of test case generation algorithms for
various atomic predicates in which E1 denotes a set of
natural numbers, E2 a set value of appropriate type, E3
and E4 two specific sequences respectively, and w a natural

number.
In this table, algorithm (1) shows that a test case can be

generated for sequence x1 to satisfy the predicate len(x1) =
w (the length of x1 is w) by assigning x1 a sequence
of w elements taken randomly from the element type T .
Algorithm (3) describes that a test case can be generated
for sequence x1 to meet the condition elems(x1) = E2
(the element set of x1 is equal to set E2) by assigning x1
a sequence of elements covering all of the elements of E2.
Algorithm (5) states that a test case can be generated for
sequence x1 from the predicate hd(x1) = a1 by assigning
x1 a sequence of elements whose first element is a1 and the
rest are selected randomly from their type. Since the other
algorithms in the table can be interpreted similarly, their
elaboration is omitted.

Another important and frequently used data type is
composite type. A composite type defines a set of composite
objects, each being composed of several fields. Each field
is represented by a variable that is declared with a certain
type. The general format of a composite type declaration is
illustrated by the type A declaration below:

A = composed of
a1: Type(a1)
a2: Type(a2)
...
am: Type(am)
end

This specifies that each composite object of type A has m
fields: a1; a2; ..., am. A group of algorithms for generating
test cases from an expression involving operators on com-
posite objects are summarized in Algorithm 4.

Algorithm 4: Let q = 1 and Q(x1; x2; :::; xq) �
E(x1), where x1 denotes a composite object of type
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TABLE 4
Algorithms for test case generation from sequence type expressions

No. of Expression E(x1) Algorithms of test case generation Algorithms for the other
algorithms for x1 variables (i = 2;:::; n)
(1) len(x1) = w x1 := [a1; a2; :::; aw] xi := any 2 Type(xi)

where x1: seq of T
ak 2 T; k = 1; :::; w

(2) inds(x1) = E1 x1 := [a1; a2; :::; aw] xi := any 2 Type(xi)
where x1: seq of T
ak 2 T; k = 1; :::; w
w = card(E1)

(3) elems(x1) = E2 x1 := [a1; a2; :::; aw] xi := any 2 Type(xi)
where ak 2 E2; k = 1; :::; w; and
8i;j2[1::w] � i 6= j ) ai 6= aj

(4) conc(x1; E3) = E4 x1 := [a1; a2; :::; ak] xi := any 2 Type(xi)
where E3 = [ak+1; :::; aw];
1 � k < w; and
E4 = [a1; a2; :::; aw]

(5) hd(x1) = a1 x1 := [a1; a2; :::; aw] xi := any 2 Type(xi)
where ak 2 T; k = 2; :::; w

(6) tl(x1) = E4 x1 := [a1; a2; :::; aw] xi := any 2 Type(xi)
where conc([a1]; E4) = [a1; a2; :::; aw]

A, E(x1) is an expression involving x1 and an oper-
ator defined on composite type, such as make function
(e.g., mk_A(v1; v2; :::; vm)), field select (e.g., x1:a1), modify
(e.g., modify(mk_A(v1; v2; :::; vm), a1� > newV alue)),
equality (=), and inequality (<>). Then, a collection of al-
gorithms for generating a test case from each kind of atomic
predicate is shown in Table 5.

Algorithm (1) in Table 5 suggests that a composite
object x1 of type A can be created to satisfy the equation
x1 = mk_A(v1; v2; :::; vm) by assigning the designated
values vj (j = 1; :::;m) to the corresponding field vari-
ables x1:aj . Algorithm (3) states that a composite object x1
can be generated to meet the condition x1 = modify(y;
a1� > v1; a2� > v2) by executing the three assignment
statements sequentially: x1 := y (assigning composite object
y to x1), x1:a1 := v1 (assigning value v1 to the field variable
a1 of x1), and x1:a2 := v2. The other algorithms can be easily
interpreted similarly, and their explanations are therefore
omitted.

Since a test condition of a functional scenario can be
a disjunction of several conjunctions of atomic predicates,
the algorithms on atomic predicates discussed so far are
not sufficient. We must discuss the issues in relation to test
case generation from a conjunction and disjunction. Below
in Section 3.2 we focus on conjunction and in Section 3.3 we
discuss disjunction.

3.2 Generation from Conjunction

As indicated in Criterion 2 of Section 2.2, the test condition
Spre ^ Ci of the scenario Spre ^ Ci ^ Di (i = 1; :::; n), and
the scenario itself, can be transformed into an equivalent
disjunctive normal form, say P1 _ P2_ � � � _ Pm (m � 1),
where each Pj (1 � j � m) is a conjunction of atomic
predicates, say Q1j ^Q2j ^ � � � ^Qwj (w � 1).

The essential idea of the algorithm for generating test
cases from the conjunction is first to form an ordered partition
of the atomic predicate set fQ1j ; Q2j ; :::; Qwj g according to
predicate dependency, and then properly apply the algorithms
mentioned previously to generate a test case satisfying all of
the atomic predicates in the conjunction if it is satisfiable. To

comprehend the essential idea, we first need to clarify the
concepts of predicate dependency and ordered partition.

Notation:

� V ar(E) denotes the set of free variables occurring in
predicate E.

� [1::n] denotes the set of integers f1; 2; : : : ; ng.
� fQ1j ; Q2j ; :::; Qwj g denotes all of the atomic predicates

in the conjunction Q1j ^Q2j ^ � � � ^Qwj .

Definition 13 (predicate dependency). Let E1 and E2 be two
predicate expressions. If V ar(E1) � V ar(E2), E2 is said
to be dependent onE1, which is represented asE1 @ E2.

For example, predicate x�y > 20 is dependent on x > 0;
that is, x > 0 @ x � y > 20.

Definition 14 (ordered partition). Let fR1; R2; :::; Rug be
a set of predicate sets. If it satisfies the following two
conditions
(1) 8i2[1::u�1]8E12Ri

9E22Ri+1
� E1 @ E2

(2) 8i2[1::u]8E1;E22Ri
� :(E1 @ E2),

we say fR1; R2; :::; Rug is an ordered partition on @.

For instance, ffx > 0; y > 1g; fx�y > 20g; fx+y�z > 1;
x+y�z < 100gg is an ordered partition on@, whereas ffx >
0; x+y > 1g; fx�y > 10g; fx+y �z > 1; x+y �z < 100gg
is not because there exists a predicate x + y > 1 in the first
predicate set on which the predicate x�y > 10 in the second
predicate set is not dependent (violating condition (1)). It is
also because that the two predicates in the first predicate set
satisfies the dependency relation, i.e., x > 0 @ x + y > 1,
which violates condition (2) in the definition.

Definition 15 (predicate set satisfaction). Let R be a predi-
cate set and t be a test case. If t satisfies every predicate
in R, we say t satisfies R.

Suppose R = fx > 0; x � y < 10g and a test case t =
f(x; 2); (y; 3)g. Then, obviously t satisfies R by definition
because t satisfies both x > 0 and x � y < 10.

The rational for forming the ordered partition based on
the predicate dependency in the algorithm is that producing
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TABLE 5
Algorithms for test case generation from composite type expressions

No. of Expression E(x1) Algorithms of Algorithms of
algorithms test case generation test case generation

for x1 whose field variables for the remaining
are a1, a2, ..., am declared variables

with any types in SOFL (i = 2;:::; n)
(1) x1 = mk_A(v1; v2; :::; vm) x1:aj := vj , j = 1; :::;m xi := any 2 Type(xi)
(2) x1:aj = vj x1:aj := vj , j = 1; :::;m xi := any 2 Type(xi)
(3) x1 = modify(y; x1 := y; x1:a1 := v1; xi := any 2 Type(xi)

a1 ! v1; a2 ! v2) x1:a2 := v2;
(3) x1 = y x1 := y xi := any 2 Type(xi)
(4) x1 <> y x1 := y; x1:a1 := y:a1 + �; xi := any 2 Type(xi)

� > 0

values for the variables in a predicate (e.g., x+y �z > 1) de-
pends on the values already generated from the depended
predicates (e.g., x > 0 and y > 1).

The essential idea of the algorithm to generate a test case
satisfying the conjunction Q1j ^Q2j ^� � �^Qwj is summarized
as follows. Firstly, construct fR1; R2; :::; Rug as an ordered
partition on @ for the set fQ1j ; Q2j ; :::; Qwj g (1 � u � w).
Thus, fR1; R2; :::; Rug becomes an alternative expression of
fQ1j ; Q2j ; :::; Qwj g but more suitable for test case generation.
Secondly, generate a test case that satisfies all the predicates
in Ri (1 � i � u) and then utilize the resultant test case to
generate a more complete test case for Ri+1 (i.e., produce
values for more variables involved). Repeat this process
until Ru is reached and a qualified test case is produced.
However, if the generation fails for Ri, it will go one step
back to retry generating a test case for Ri�1 (provided
that i � 1 � 1) and then repeat the same process. But if
the number of failures to generate the qualified test case
satisfying all R1; R2; :::; Ru reaches a pre-defined one, a
failure message will be issued as the result of the algorithm.

To generate a test case satisfying all the predicates in
Ri, the algorithm generates a test case satisfying the first
atomic predicate of Ri (assuming that the atomic predicates
in Ri are arranged to appear from left to right) and then
test whether it satisfies all of the other atomic predicates
in Ri. If yes, a successful test case is generated; otherwise,
repeat the same process for the other atomic predicates in
Ri until all of the atomic predicates of Ri is exhausted. The
algorithm to generate a test case satisfying the conjunction
ofQ1j^Q2j^���^Qwj was reported in our previous conference
paper [39] and the reader with further interest can refer to it
for details.

One may argue that existing SAT or SMT solvers should
be utilized to generate test data for conjunctions in our
work. In fact, after a careful investigation, we realize that
existing SAT solvers and SMT solvers aim to find a solution
to tell whether a conjunction is satisfiable. Although they
can be used for test case generation, requiring them to
meet various test case generation criteria of our interest is
difficult. Furthermore, SAT solvers, such as RISS [40], only
deal with propositional logic, their capability is limited for
our formal notation that adopts first-order predicate logic.
Existing SMT solvers, such as Yices [41] and Z3 [42], may
be a better possibility for the solution due to their capability
of dealing with decidable fragments of predicate logic, but
they are difficult to be adopted in our work because they do

not cope with many compound types and the operators de-
fined on those types provided in our specification language.

3.3 Generation from Disjunction

Compared to test case generation from a conjunction, algo-
rithm for test case generation from the disjunction P1 _P2_
� � � _ Pm (m � 1) is rather simple. There are at least
two kinds of solutions. One is to take a non-empty test set
generated from any of the disjuncts Pj (1 � j � m) as
the resultant test set for the disjunction, but this is unlikely
to exercise all of the disjuncts. A better choice is to take the
union of all of the test sets generated from all of the disjuncts
as the test set for the disjunction. Since the algorithm is
trivial, we do not discuss its details here.

3.4 Motivation of V-Step

The scenario-path coverage described in Criterion 1 indicates
the adequacy for test set generation in our testing approach.
It requires that not only all the functional scenarios in the
specification be covered, but also all of the representative
program paths of the program be traversed. Our discussions
on algorithms for test case generation so far have focused
on achieving a full coverage of functional scenarios in the
specification, but those algorithms do not necessarily deal
with the problem of how to gain a full coverage of the rep-
resentative program paths in the corresponding program.
As is well-known in testing, bugs on a path is unlikely to be
revealed if the path is never executed.

To address this concern, more test cases need to be
produced if the already generated test set does not ensure an
expected coverage of the paths. The challenge is what and
how test cases should be generated so that representative
paths of the program can all be traversed. It is worth
understanding that this challenge is not limited to our
testing approach but a common problem to all of existing
specification-based testing approaches.

In this section, we describe a “Vibration” step, called V-
Step, as one-step forward to this problem. The V-Step is an
integral part of our V-Method, and presents a technique
for utilizing the test case generation algorithms introduced
previously to produce adequate test cases meeting Criterion
1. Future development of the technique is expected to lead
to more effective and efficient solutions. Our V-Step focuses
on test case generation from an atomic predicate, which is
a fundamental problem because test case generation from
conjunctions and disjunctions depends on it.
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The V-step is basically a heuristic method of local search
for new test data, depending on a notion of “distance”.
A simple example helps to illustrate the essential idea of
the technique. Let E1 > E2 be a relation between two
expressions E1 and E2. Taking the V-Step we will first
produce values for all the variables involved in both E1
and E2 such that E1 > E2 holds and the distance between
E1 and E2, i.e., jE1 � E2j (absolute value), is treated as the
base distance, and we will then create a new test case satis-
fying the relation when the distance is changed deliberately
greater or smaller (see a detailed discussion of distance in
Section 3.6) according to a certain strategy. Repeating this
process by increasing and decreasing the distance between
E1 and E2, respectively, until a decision for terminating the
test case generation is made. It is worth mentioning that
the notion of distance between two numeric test cases was
used in the work of Chen et al. on adaptive random testing
(ART) [43] and extended to objects in the work of Ciupa et
al. on adaptive random testing for object-oriented software
(ARTOO) [44], [45], but in our work, the distance is defined
between two formal expressions in a relation from which
test cases are generated.

The rational for the V-Step comes from the theory that
a functional scenario is usually refined into a program
fragment that may implement the defining condition of the
scenario conditionally. This point can be understood easily
with an example. Assume x < y + 500 ^ z = x + y is
a single functional scenario in which x < y + 500 is the
test condition involving only input variables x and y, and
z = x+y the defining condition involving output variable z.
This scenario can, for example, be refined into the following
conditional statement in the program:
1 if (x < y + 100) {
2 i = i+ 1;
3 z = x+ y;
4 } else if (x >= y + 100 && x < y + 300) {
5 i = i+ 2;
6 z = x+ y;
7 } else if (x >= y + 300 && x < y + 500){
8 i = i+ 3;
9 z = x+ y;
10 } .

In any branch of the nested conditional statement, the
defining condition is correctly implemented, but meanwhile
for some reason the program also needs to update another
variable i , which can be either a local or “global” variable,
differently in different branches.

To make each decision true and false at least once,
respectively, different test cases changing within the range
x < y + 500 need to be used. For example, let x = 100
and y = �100 as the first test data. The distance between
the two expressions x and y + 500 is 300. This test data
makes the first decision x < y + 100 false and the second
decision x >= y + 100 && x < y + 300 true, thus covering
the path [1; 4; 5; 6]. Next, we enlarge the distance between x
and y + 500 to 450, and generate the new test data x = 50
and y = 0. It makes the first decision x < y+100 true, thus
covering the path [1; 2; 3]. Another change is to decrease
the distance 450 by 260 to 190, and generate the test data
x = 160 and y = �150. This makes the first decision
x < y + 100 false, the second decision x >= y + 100 &&

TABLE 6
Summary of the example for the V-Step

Test data Distance Distance Distance Decision
Up Down Evaluation

x = 100, 300 x < y + 100 (F )
y = �100 x >= y + 100 &&

x < y + 300 (T )
x = 50, 450 150 x < y + 100 (T )
y = 0
x = 160, 190 260 x < y + 100 (F )
y = �150 x >= y + 100 &&

x < y + 300 (F )
x >= y + 300 &&
x < y + 500 (T )

x < y + 300 false, and the third decision x >= y + 300 &&
x < y + 500 true, thus covering the path [1; 4; 7; 8; 9; 10].
By the above test, all of the paths in the program fragment
implementing the functional scenario are traversed. Table 6
shows a summary of the most relevant information of the
test for readability.

3.5 Principle of V-Step

Let E1(x1; x2; :::; xn) R E2(x1; x2; :::; xn) denote that ex-
pressions E1 and E2 have relation R (e.g., <, >). Applying
the V-Step to this relation, we first assign some values
to x1; x2; :::; xn such that the relation E1(x1; x2; :::; xn) R
E2(x1; x2; :::; xn) holds with an initial distance between E1
and E2, and then repeatedly create further values for the
variables such that the relation still holds but the distance
between E1 and E2 “vibrates” (changes repeatedly accord-
ing to the distance) between the initial distance and the
“maximum” or “minimum” distance, until a decision for
terminating the testing is made. The decision is made based
on one of the two conditions. One is that all the related
program paths have been traversed, and the other is that
a required number (usually pre-defined) of test cases are
generated. The former indicates that the test cases have
exercised all the related paths, while the latter implies that
covering all the related paths is difficult (possibly due to the
existence of bugs or paths not executable).

An algorithm of the V-Step can be realized by an oper-
ation (e.g., a method in a Java class) to which three formal
parameters noOftestcase, distanceUp and distanceDown
are needed. noOftestcase is the maximum number of test
cases to be generated before a newly traversed path is
found; it is used to terminate the algorithm, indicating the
impossibility of finding any new path even if more test cases
are generated. distanceUp is used to increase the distance
between the two expressions and distanceDown is used to
decrease the distance. The update of the distance is done by
a Distance function in the algorithm. Both distanceUp and
distanceDown are positive integers and their actual values
are determined by the calling operations (e.g., methods
in Java), according to the desired degree of changing the
distance. The desired degree can be decided by the tester,
but it can also be automatically set.

When all the variables involved in the relation are of
numeric types, such as integers or real numbers, a gen-
eral algorithm for automating this process can be simple,
but challenge will arise when the types are more complex
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TABLE 7
Definition of the Distance function on numeric types

Distance function definition
(for nat0, nat, int, real types)
Distance(E1; E2, “R”) � abs(E1 � E2)
where R 2 f=; <; <=; >; >=; <>g

TABLE 8
Definition of the Distance function on the other basic types

Types Distance function definition
char Distance(E1; E2, “=”) � 0

Distance(E1; E2, “<>”) � 1
enumeration Distance(E1; E2, “=”) � 0

Distance(E1; E2, “<>”) �
abs(index(E1)� index(E2))
where index(E1) denotes the index
of the value E1 in the enumeration
type; and likewise for index(E2).

compound types, such as set, sequence, or composite types
adopted in most of the model-based formal notations. The
core of the challenge lies in the difficulty in defining the
concept of distance between the two expressions E1 and
E2 if the relational operator is not for comparison between
numeric values but something else, such as inset (mem-
bership) or subset. In the next section, we will discuss the
issue of how the distance can be achieved by the Distance
function mentioned above.

3.6 Distance Definitions on Types

In the discussion of this section we use E1 and E2 to
represent two expressions of generic types, but when the
Distance function is defined on a specific type (e.g., int),
the types of E1 and E2 will be automatically specialized
to that type, unless we clearly mention it. We will define
the function on numeric types, including nat0 (natural
numbers including zero), nat (natural numbers without
zero), int, and real, char (characters), enumeration types,
and set types, respectively. Basically, a distance between two
expressions E1 and E2 is the “difference” between the two
values resulting from the evaluation of the two expressions,
indicating how “far” it is between the two values. The core
of defining the concept is how to interpret the “difference”.
As discussed next, the “difference” between two values is
defined differently on different types, but all of them reflect
our perception of difference in some view.

The definition of the Distance function on numeric
types is given in Table 7. The definitions of the Distance
function on the character type and enumeration types are
given in Table 8. In all these definitions, when relational
operator is “=”, the distance between the two expressions
is defined as 0; otherwise in the case of char, it is defined
as 1 (indicating the least “difference”), and in the case of
enumeration types, the distance is defined as the absolute
value of the difference between the indexes of the two
operands. Note that when the distance is 0, the V-Step still
generates test data that satisfy the related equation. For
example, from the equation E1 = E2 in Table 8, we can
generate E1 = ‘a’ and E2 = ‘a’, E1 = ‘q’ and E2 = ‘q’,
respectively.

TABLE 9
Definition of the Distance function on set types

Distance function definition for set types
Distance(E1; E2, “subset”) � card(E2)� card(E1)
Distance(E1; E2, “psubset”) � card(E2)� card(E1)
Distance(E1; E2, “inset”) � card(E2)� index(E1; E2)
Distance(E1; E2, “notin”) � card(E2)
Distance(E1; E2, “=”) � 0
Distance(E1; E2, “<>”) � abs(card(E1)� card(E2))

The definition of the Distance function on set types are
given in Table 9. In this definition, we treat a set as an in-
dexed set in the sense that each element of the set is indexed
by a natural number. Let index(a; P ) be an index function
that yields the index of element a in set P . In the case of
set P = f2; 5; 9; 10g, for example, we have index(2; P ) = 1,
index(5; P ) = 2, index(9; P ) = 3, and index(10; P ) = 4.
This treatment of sets allows us to easily define the dis-
tance between two elements in a given set. Moreover, the
distance between two sets E1 and E2 with respect to the
relation subset(E1; E2) (i.e., subset) is defined as the differ-
ence between their cardinalities (denoted by card(E1) and
card(E2)); and likewise for the distance between two sets
with respect to the relation psubset(E1; E2) (i.e., proper sub-
set). Note that Distance(E1; E2, “=”) � 0 only means that
the distance betweenE1 andE2 is zero, but it does not mean
that the set variables involved in expressions E1 and E2 can
not take different values in the next test case generation. For
example, suppose x = y is a relation describing that integer
sets x and y are the same. When generating test cases, we
first generate x = f�1; 0; 1g and y = f�1; 0; 1g, and then
generate x = f�10; 0; 10g and y = f�10; 0; 10g, and the
third would be x = f�100; 0; 100g and y = f�100; 0; 100g.
Similarly, the Distance function can also be defined on
sequence types, map types, and composite types, which
are adopted in SOFL and many other model-based formal
notations. Since the definition shares the same principle for
defining the function on set types, we omit the detailed
discussion for brevity.

Note that the above definitions of the function Distance
on various types present only one way to compute the
distance between the two sides of a relation. This does not
imply that other ways of defining the distance function are
impossible. Each way of defining the Distance function
determines the style of a specific “vibration” in selecting
test cases. We have realized through our experience that
it would be difficult to define the Distance function for
obtaining an efficient path coverage without taking advan-
tage of the program structure, and plan to investigate more
complex grey-box approaches in our future work.

3.7 Prototype Tool

We have developed a prototype tool that implements the
above algorithms for test case generation based on SOFL
process specifications. Despite the fact that the latest ver-
sion of the tool is limited in dealing with deeply nested
data structures (e.g., set of sequence of composite objects)
and handling large scale applications, it has allowed us to
demonstrate the feasibility of implementing the algorithms.
Basically, the tool supports automatic test case generation
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Fig. 3. Snapshot of the SOFL prototype test tool

from a single functional scenario of a process specification
and the evaluation of the defining condition provided that
the final value of the corresponding output variable is
supplied. Fig. 3 shows a snapshot of the tool generating a
test case from a process specification. Since the work on the
supporting tool is beyond the scope of this paper, we omit
the detailed discussion concerning it here. As pointed out
in Section 7, we will continue to work on the improvement
of this tool and will integrate it with other related prototype
tools in our future work.

4 CONTROLLED EXPERIMENT

As is well-known, experiments in software testing are usu-
ally costly and difficult to carry out due to many constraints
on resources. As a research lab in the university environ-
ment, we could take advantage of our graduate students to
help conduct experiments, as many other research groups
do in academia [46]. The students have experienced our
testing method and the related testing approaches; they are
assigned to prepare the testing target programs, generate
test cases, and perform the actual testing of the programs in
our experiment (see details in Section 4.2). The experiment
compares our V-Method with the compatible Functionality-
Based Input Domain Partition Method (FBIDPM) [32], [47]
using mutation testing in which the mutants are produced
from the original code of a Universal Card System (UCS).
The idea of the FBIDPM is to identify characteristics that
correspond to the intended functionality of the program un-
der test and to generate test cases based on the functionality-
based characteristics. In our experiment, we use the pre- and
post-conditions in the specification of an operation as the
sources for the characteristics, but focus on the conditions
that help partition the input domain in test case generation.
The comparison of the two methods is mainly measured in
terms of mutation score since it is a commonly used criterion
[48].

We describe the experiment below by elaborating on the
system background, experiment setup, experiment result,
threats to the validity, and discussions on potential chal-
lenges of our V-Method.

4.1 System Background

The system used for this experiment is called Universal Card
System (UCS), which is developed to support the future use
of the universal card (UC) in Japan. The universal card is
intended to be a unified card that can be used to enjoy the
railway services, automated teller machine (ATM) services
of banks, shopping at supermarkets, and specified library
services. SOFL was used to write the formal specification of
UCS that contains 1141 lines of formal expressions. C# was
used for implementation of the software that contains 7422
lines of code.

4.2 Experiment Setup

In order to reduce the impact of the human factor on the
result of the experiment, using multiple tests conducted by
different groups is desirable. We generate two test suites
manually by different groups using our V-Method and the
FBIDPM, respectively. We use TEST1 and TEST2 to represent
the two tests using the two test suites, respectively. Further,
in TEST1, we use TEST1-V to name the test carried out with
the test cases generated using the V-Method and TEST1-DP
(domain partition) the test carried out with the test cases
generated using the FBIDPM. Similarly, in TEST2, we use
TEST2-V to represent the test with the test cases generated
using the V-Method and TEST2-DP the test with the test
cases generated using the FBIDPM. To avoid unnecessary
mistakes in test result evaluations, we ensure that the result
of a test is always judged under the monitoring of all the
relevant persons, including the test case generator, the test
performer, and the programmer of the UCS.

4.2.1 TEST1

The goal of TEST1 is to compare the two testing methods by
following their principle for generating test cases. Both the
V-Method and the FBIDPM generate test cases based on the
domain partition defined by the pre- and post-conditions
of an operation, but they may generate different number
of test cases. In general, since the “vibration” algorithm
in the V-Method is used if the current test case explores a
new program path, the V-Method tends to produce more
test cases than the FBIDPM that requires only selecting
a representative test case for each subset in the domain
partition. In TEST1, we intend to observe the difference
between the two methods in such a natural manner.

The test suite for TEST1 is generated manually by the
first author of this paper using the two different methods
in the manner mentioned above, respectively. This test set is
applied to test the mutants of the original code of UCS. An
experienced researcher in our research group is employed
to carry out the injection of bugs to the original programs
of UCS to create the mutants manually. Each mutant is a
faulty program, which is produced by inserting one bug
into the code of a method (i.e., a subroutine) in a C#
class. A number of different mutants are usually created
from the same original method by means of a systematic
bug injection that ensures an even distribution of different
kinds of bugs over the program paths. We used 13 kinds
of mutant operators for TEST1, including arithmetic operator
replacement, variable replacement, logical operator replacement,
exception handling change, and statement position change.
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The actual testing (i.e., using the generated test cases
to run the mutants using the Microsoft Visual Studio) is
carried out by a graduate student who has around five years
experience in SOFL formal specification techniques and
about three years experience in using the testing methods.
For each mutant, the test cases generated with our method
and the test cases generated with the FBIDPM are used
separately to test the mutant. Each test result is analyzed
by the student together with the programmer of UCS based
on the test oracle derived from the related specifications.
Specifically, the student tester compares the execution result
(output values) with the test oracle if it is given as the
expected output values. If both values are not consistent, the
tester will tell that the mutant is killed and this judgement
will be confirmed by the programmer. But if the test oracle is
given as a logical expression, as we mentioned in Section 2.3,
then the tester will have to substitute the output values of
the execution for the corresponding output variables in the
logical expression and evaluate it. According to this result,
the tester will tell whether the mutant is killed or not. Again,
in this case the programmer plays the role of confirming the
conclusion made by the tester.

4.2.2 TEST2
The goal of TEST2 is to compare the two testing methods
by using the same number of test cases generated using
each of the two methods, under the condition that the
principles of both methods are properly applied in the test
case generation. This allows us to observe the effect of the
V-Method without any bias potentially to be caused by
using different number of test cases generated by different
testing methods. However, the difficulty is that the number
of test cases generated by the V-Method is usually greater
than that produced by the FBIDPM because the V-Method
requires to use the “vibration” algorithm to make more test
cases for the exploration of more program paths whereas the
FBIDPM only requires the selection of a representative test
case from each partitioned sub-domain. In TEST2, we adopt
the following approach to deal with this problem. To test
each mutant, we strictly apply the principle of the V-Method
and the FBIDPM to produce two test sets, respectively. If
any test set, say T1, has less number of test cases than the
other, say T2, we then randomly generate more test cases
for test set T1 to ensure that it has the same number of test
cases as T2. Our experience in the experiment shows that
in all circumstances, the number of test cases generated by
the FBIDPM is smaller than that of the test cases generated
by the V-Method. To make the numbers equal, we produce
additional test cases randomly for the test set produced by
the FBIDPM. Since using more test cases in this context will
not damage the effect of the FBIDPM in terms of killing
mutants (instead, its effect might be strengthened because
additional test cases may help kill more mutants for the
FBIDPM), the result of the comparison between the two
methods cannot be in favor of our V-Method.

TEST2 is carried out by a different group of graduate
students from those conducting TEST1. The test suite of
TEST2 is produced manually by a well-experienced grad-
uate student in our lab. This test suite is applied to another
set of mutants of the original code of UCS. A different
student, who was working on mutation testing, carried out

the injection of bugs to the original programs of UCS to
create the mutants in the same way as for TEST1 but with
a slightly different set of mutant operators. The operators
include arithmetic operator replacement, relational operator re-
placement, logical operator replacement, constant replacement,
assignment statement change, assignment statement deletion,
condition negation, unary operator change, iteration statement
change, statement block deletion, and method invocation change.
It is worth mentioning that we could use the same set of
mutants created for TEST1 for the experiment in TEST2, but
since that will pose a threat to the validity of the experiment,
we did not take that approach. The threat is that the same
set of mutants may be sensitive only to either the V-Method
or the FBIDPM. Using two different sets of mutants as we
have adopted in our experiment can avoid this threat.

The actual testing for TEST2 is done using the Microsoft
Visual Studio by another student who has been working
on software testing based on SOFL formal specifications
for around three years. For each mutant, the test cases
generated using our method and the test cases generated
using the FBIDPM are used separately to test the mutant.
Each test result is analyzed by checking whether the result
satisfies the test oracle derived from the related specification
and comparing the result of running the mutant with that
of executing the corresponding original program with the
same test case.

4.3 Experiment Results

As indicated in Section 2.1, in a SOFL formal specification,
a module may contain several processes and each process
may contain several functional scenarios. Since process is
an independent basic functional unit, we present the ex-
periment results at the process level. This also allows us
to present the experiment result comprehensibly because it
avoids uninteresting details that may affect the readability.

Table 10 shows the result of TEST1-V and Table 11
gives the result of TEST1-DP. In the tables, the original
process names used in the formal specification are properly
simplified for the sake of space. For each process, we present
the number of test cases generated for running the mutants,
together with the maximum number of the test cases that
are actually needed to kill the mutants (in the parenthesis),
the number of the mutants created and the number of the
mutants killed. We also show the mutation score (MS) that is
the ratio between the number of the mutants killed to that of
the mutants created. For instance, in testing the mutants of
the process MUC_Card using the V-Method, we used 6 test
cases in which 2 test cases were used to kill the mutants,
created 10 mutants, killed 10 mutants, and produced the
100% MS.

The result of TEST1 shows that the test cases generated
using the V-Method kill more mutants than those produced
using the FBIDPM for some processes but kill the same
number for some other processes. The average mutation
score for the V-Method is approximately 91%, higher than
76% for the FBIDPM.

Tables 12 and 13 show the result of TEST2-V and TEST2-
DP, respectively. The format of these two tables is the same
as that of Table 10 and Table 11 except that we also present
the path coverage information collected manually by the
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TABLE 11
The result of the test TEST1-DP

Processes No. of No. of No. of MS
test created killed (%)
cases mutants mutants

MUC_Card 2(2) 10 9 90
UTF_Table 2(2) 6 4 67
UUC_Type 3(3) 5 4 80
UC_Amounts 3(1) 7 7 100
CUC_Card 3(3) 5 3 60
SA_Balance 2(2) 10 8 80
Withdraw 4(4) 15 12 80
Deposit 3(3) 10 7 70
Transfer 4(4) 13 10 77
B_Dollars 3(3) 10 6 60
B_JPY 3(3) 10 9 90
B_book 3(3) 8 7 88
RT_Book 2(2) 10 6 60
S_Book 3(3) 6 5 83
RN_Book 3(3) 10 7 70
CF_Overdue 3(2) 7 6 86
CC_WC 3(3) 10 7 70
CC_FBA 4(4) 18 13 72
R_Money 2(2) 10 8 80
BR_Ticket 3(3) 12 10 83
REN_Control 3(3) 10 5 50
REX_Control 3(3) 10 6 60
CUC_Card 5(3) 10 10 100
M_Payment 2(2) 9 7 78
C_Payment 1(1) 7 5 71
Total 72(67) 238 181 76

TABLE 10
The result of the test TEST1-V

Processes No. of No. of No. of MS
test mutants mutants (%)
cases created killed

MUC_Card 6(2) 10 10 100
UTF_Table 7(2) 6 6 100
UUC_Type 8(8) 5 4 80
UC_Amounts 8(4) 7 7 100
CUC_Card 6(6) 5 4 80
SA_Balance 8(3) 10 9 90
Withdraw 9(6) 15 15 100
Deposit 10(10) 10 8 80
Transfer 10(10) 13 11 85
B_Dollars 7(7) 10 9 90
B_JPY 7(6) 10 10 100
B_Book 6(1) 8 8 100
RT_Book 6(4) 10 10 100
S_Book 9(3) 6 6 100
RN_Book 9(9) 10 7 70
CF_Overdue 6(6) 7 6 86
CC_WC 8(8) 10 7 70
CC_FBA 8(8) 18 14 78
R_Money 7(7) 10 9 90
BR_Ticket 8(5) 12 12 100
REN_Control 10(5) 10 9 90
REX_Control 10(7) 10 10 100
CUC_Card 10(4) 10 10 100
M_Payment 4(2) 9 9 100
C_Payment 8(5) 7 7 100
Total 195(138) 238 217 91

tester in TEST2. For instance, in testing the mutants of the
process MUC_Card using the V-Method, we cover all the 6
paths out of the total 6 paths.

TEST2 exhibits a consistent result with that of TEST1,
showing the superiority of the V-Method over the FBIDPM.
TEST2-V achieves the 95% average mutation score and
the 60% average path coverage rate with 1800 test cases,
whereas TEST2 obtains the 69% average mutation score and
the 35% average path coverage rate with the same number
of test cases.

We have also collected the data of various respects for
comparison based on both the results of the two tests. Fig.
4 shows the box plots comparing the MS performance of
the two methods in TEST1, TEST2, and both for all of the
processes involved. In the case of TEST2, we have collected
the path coverage information for each process. Fig. 5 shows
the box plots comparing the path coverage rate obtained by
the two methods in TEST2 for all of the processes, where the
path coverage rate is defined as follows:

path coverage rate = the number of paths traversed / the total
number of paths.

4.4 Threats to Validity

As is well-known, any experiment in software engineering
faces threats to its validity and our experiment is not an
exception. In this section, we discuss how we made efforts
during the process of setting up and carrying out our
experiment to mitigate the major threats to its validity.

4.4.1 Non-determinism of Algorithms
The two testing methods used in our experiment are all
nondeterministic in producing test cases, and therefore the
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TABLE 12
The result of the test TEST2-V

Processes No. of No. of No. of MS No. of
test created killed (%) covered
cases mutants mutants paths (total), percentage

MUC_Card 44(12) 11 11 100 6(6), 100%
UTF_Table 28(5) 5 5 100 4(4), 100%
UUC_Type 29(6) 6 6 100 6(6), 100%
UC_Amounts 32(5) 6 5 83 4(5), 80%
CUC_Card 8(2) 2 2 100 2(2), 100%
SA_Balance 59(15) 9 9 100 5(6), 83%
Withdraw 103(31) 21 21 100 42(68), 62%
Deposit 83(24) 19 17 89 32(44), 73%
Transfer 305(93) 40 38 95 87(276), 32%
B_Dollars 164(51) 24 23 96 36(44), 82%
B_JPY 193(66) 28 27 96 41(44), 93%
B_Book 52(18) 9 8 89 5(6), 83%
RT_Book 42(9) 7 7 100 7(7), 100%
S_Book 10(4) 2 2 100 3(3), 100%
RN_Book 64(12) 8 7 88 6(7), 86%
CF_Overdue 21(6) 5 5 100 3(3), 100%
CC_WC 38(12) 9 8 89 7(8), 88%
CC_FBA 145(47) 22 21 95 19(20), 95%
R_Money 56(15) 14 12 86 12(14), 86%
BR_Ticket 75(37) 10 10 100 7(7), 100%
REN_Control 18(4) 4 4 100 4(4), 100%
REX_Control 25(7) 6 6 100 4(5), 80%
CUC_Card 126(36) 17 15 88 10(11), 91%
M_Payment 48(16) 10 10 100 9(9), 100%
C_Payment 32(8) 8 7 88 7(8), 88%
Total 1800(541) 302 286 95 368(617), 60%

TABLE 13
The result of the test TEST2-DP

Processes No. of No. of No. of MS No. of
test created killed (%) covered
cases mutants mutants paths (total), percentage

MUC_Card 44(8) 11 8 73 4(6), 67%
UTF_Table 28(7) 5 5 100 4(4), 100%
UUC_Type 29(3) 6 3 50 3(6), 50%
UC_Amounts 32(4) 6 4 67 3(5), 60%
CUC_Card 8(2) 2 2 100 2(2), 100%
SA_Balance 59(13) 9 9 100 5(6), 83%
Withdraw 103(53) 21 16 76 22(68), 32%
Deposit 83(22) 19 13 68 15(44), 34%
Transfer 305(74) 40 28 70 36(276), 13%
B_Dollars 164(43) 24 18 75 22(44), 50%
B_JPY 193(45) 28 21 75 31(44), 70%
B_book 52(5) 9 5 56 4(6), 67%
RT_Book 42(4) 7 4 57 4(7), 57%
S_Book 10(4) 2 2 100 3(3), 100%
RN_Book 64(7) 8 6 75 4(7), 57%
CF_Overdue 21(4) 5 4 80 2(3), 67%
CC_WC 38(6) 9 5 56 4(8), 50%
CC_FBA 145(25) 22 15 68 14(20), 70%
R_Money 56(7) 14 7 50 7(14), 50%
BR_Ticket 75(27) 10 6 60 4(7), 57%
REN_Control 18(6) 4 2 50 2(4), 50%
REX_Control 25(2) 6 2 33 2(5), 40%
CUC_Card 126(33) 17 13 76 8(11), 73%
M_Payment 48(5) 10 5 50 5(9), 56%
C_Payment 32(4) 8 4 50 4(8), 50%
Total 1800(413) 302 207 69 214(617), 35%
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Fig. 4. Comparison of the MS performance of the two methods in
TEST1, TEST2, and both

Fig. 5. Comparison of path coverage rate of the two methods in TEST2

test cases produced by any of them may vary randomly
within a scope. To evaluate the performance of these algo-
rithms, it is necessary to repeatedly use each algorithm in a
relatively great number of times. In TEST1, the V-Method is
applied to produce 195 test cases that lead to approximately
514 runs of the mutants. These test cases are produced by
following the principle of the V-Method. The result of the
test shows that only 138 out of the 195 test cases are actually
needed to kill the 217 out of the total 238 mutants. In the
meanwhile, the FBIDPM is applied to produce 72 test cases
that are used to run the mutants approximately 392 times.
These test cases are produced by following the principle of
the FBIDPM without any other constraints. Only 67 out of
the 72 test cases are actually needed to kill 181 out of 238

mutants.
In TEST2, the V-Method is applied to generate 1800 test

cases that lead to approximately 3,547 runs of the mutants.
As mentioned in Section 4.2, these test cases are produced
in an interactive manner. Specifically, to test each mutant,
we first use the V-Method to produce a test case from
each functional scenario of the operation specification to
run the mutant, and then apply the “vibration” algorithm
to generate more test cases from each functional scenario to
test the mutant until no more new program path is found
by the recent three test cases. The test result shows that only
541 test cases are needed to kill 286 out of 302 mutants. After
finishing the test using the V-Method, we carry out the test
using the FBIDPM in TEST2. 1800 test cases are produced to
carry out approximately 3,547 runs of the mutants in which
413 test cases are needed to kill 207 out of 302 mutants.

Since the V-Method includes many small algorithms
dealing with the generation of test cases from different kinds
of predicate expressions, it is extremely difficult for us to
ensure that each of them is applied in a rather great number
of times in the experiment. We believe that carrying out a
much larger scale of experiment will be extremely useful in
accurately evaluating the algorithms, and we plan to do so
in our future work when the conditions (e.g., availability of
a large program code and its formal specification, sufficient
number of well trained subjects, sufficient budget) for such
an experiment are made ready.

4.4.2 Number and complexity of Used Target Programs

Another threat to the validity of our experiments is con-
cerned with the number and complexity of the target sys-
tems used for testing. In general, the more target systems
are used, the more reliable the experiment results are. To
mitigate this threat, within our capability of affordable time,
resources, and budget, we have chosen 25 processes and
their programs of 5 application systems covering 5 different
domains in the UCS as the target systems for testing in
our experiment. The time complexity of most programs
used is o(n2) (quadratic time complexity). These numbers
may not be big enough to ensure a profound evaluation of
our method, but it does allow us to observe and analyze
its performance in a relatively small scale experiment for
scientific study. Larger scale empirical studies are required
for more comprehensive evaluations of our method in the
future.

4.4.3 Human Factors

As is well-known, human factors are the major threat to the
validity of experiments generally in software engineering
[49]. As far as our experiments are concerned, there are two
specific aspects that might be influenced by human factors.
One is concerned with test case generation and the other is
concerned with the judgement of whether a bug is found (or
a mutant is killed) by a test.

To reduce the human influence in test case generation,
the test suite for TEST1 is generated by the first author of
this paper and the test suite for TEST2 is produced by a
graduate student in our lab. Both are well experienced in
using the two testing methods employed in our experiment
and can ensure that each testing method is applied to
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generate test cases in accordance with its principle and rules,
though the process can hardly be guaranteed to be perfect.

To reduce the human influence in the bug discovery
judgement, the testers and the programmer work together
to make judgements on bug discovery based on the de-
rived test oracles. The judgements are finally confirmed and
corrected (if applicable) through a session of face to face
analysis and discussions by the test case generators, the
persons who inserted bugs, the testers, and the programmer
of UCS. Each person looks at the result from a different view
and therefore all of the different views help the tester make
the final judgement as accurately as possible.

4.4.4 Weakness of Mutation Testing
Our method is evaluated using mutation testing [50], [51],
which has become a standard approach to evaluating the
quality of test data. However, as pointed out in the literature
[52], [53], [54], using equivalent mutants and/or subsumed
mutants (or redundant mutants) is likely to distort the effect
of the mutation testing. As pointed out in [54], typically
equivalent mutants and subsumed mutants are machine-
generated by a mutation testing tool. To mitigate this kind of
threat, in our experiment, we manually create the mutants
as mentioned in Tables 10 to 13 during which we have tried
to avoid equivalent mutants and subsumed mutants. To
avoid equivalent mutants, the mutant creators first apply a
selected mutant operator to statements and/or conditions in
the program and then carry out a dependency analysis in the
related program segment, as suggested in [55], to confirm
that the created mutant will result in a behavior different
from the original program. To avoid subsumed mutants,
the mutant creator always tries to apply different kind of
mutant operator to different part of the statements or condi-
tions on program paths. The resultant mutants are reviewed
by the first author of this paper to ensure the quality of the
mutants, in particular the avoidance of equivalent mutants
and subsumed mutants. The results of the two tests TEST1
and TEST2 have also been analyzed by the mutant creators
and the first author together to confirm that all of the killed
mutants are not equivalent or redundant.

4.5 Discussion

Despite the effectiveness of our V-Method indicated in our
experiment above, we have also learned several challenges
to the V-Method for automatic program testing through our
research. Firstly, it seems extremely difficult, if not impos-
sible, to establish a specification-based test case generation
method that could guarantee a full path coverage of any
given program. The challenge lies in the fact that a formal
specification might be abstract, sometimes even incomplete,
and generally has infinite ways of implementation. Our V-
Method provides a “directional” solution to this problem
but still lacks a solid theory for the guarantee. Considerable
efforts are underway in our research lab for further investi-
gation in this area.

Secondly, if an atomic predicate is not a linear expres-
sion, such as x5+ y10� z2 > w2+ z3, automatic generation
of a test case from it would be extremely difficult. The
hardest thing is the formation of a general algorithm that
can deal with all kinds of such expressions with a practi-
cally acceptable efficiency. A similar difficulty also exists in

dealing with some set expressions, such as x =2 E where
E is a very large or infinite set. Fortunately, our experience
with many practical software development projects suggest
that the complicated situations like the above hardly appear
in practice. Therefore, this challenge may mainly remain in
theory.

Thirdly, to make the automatic testing technique effec-
tive, the implemented program must preserve the signature
of its specification (i.e., all input, output, external variables
of both the specification and the program must be the same,
although their types can be in different format). However,
this seems difficult to guarantee in practice, although the-
oretically the consistency can be achieved through configu-
ration management. One way to ensure this 1 : 1 relation
is through automatic signature preserving transformation from
specifications to programs. Another possibility is to strongly
enforce the discipline that the program is implemented with
the assurance of keeping its module interface consistent
with the signature of the specification.

Finally, when using the test cases generated based on
the specification syntax to test the programs, the test cases
must be translated into the program language suitable for
executing the program. While such a translation can be
rather easily done by humans who are familiar with both
the specification notation and the program language, it
may require a considerable support in a software tool. The
reason is that an abstract type of an input variable in the
specification (e.g., set type) can be implemented by one of
the several different concrete types (e.g., array, vector, list)
in the program and such an implementation is unknown in
advance. If the test cases need to be automatically translated
into the program syntax suitable for running the program,
the tool must prepare all of the possible solutions to deal
with every possible choice of the concrete data structure.

5 RELATED WORK

Since our work presented in this paper falls into the cate-
gory of automatic specification-based testing, we only focus
the review and discussion of related work on automated
specification-based testing techniques in this section. Auto-
matic test case generation methods have been proposed for
various kinds of formal specification techniques, such as al-
gebraic specification, finite state machine, and pre-post style
model-based (sometimes called state-based) specification,
and different generation strategies are proposed for different
formalisms. This section presents the related studies on
testing based on these three kinds of formal specifications.
Our description does not provide a complete coverage; only
a sampling of the most relevant work directly referenced
during our research is included in this section.

Algebraic specifications feature definition of abstract
data types in an axiomatic manner, and their correctness re-
quires the satisfaction of the axioms by the implementation
of the functions defined in the specification. A fundamental
principle for testing the implementation under test based
on algebraic specifications was proposed and studied by
Gannon et al. [56], Bouge et al. [57], and Bernot et al. [18]. The
principle is characterized by choosing some instantiations of
the axioms and checking whether an execution of the imple-
mentation makes the terms occurring in the instantiations
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yield results that satisfy the corresponding axioms. Dauchy
et al. reported an experiment on test set derivation based
on an algebraic specification of a piece of critical software
[58] and Kong et al. described an application of testing EJB
components based on algebraic specifications [59]. The focus
of these researches is mainly on using equations in algebraic
specifications as the basis of test oracle to check whether the
implementation is satisfactory or not, but the problem of
how test cases should be generated based on specifications
are not well studied. Our work in this paper addresses this
problem by providing a functional scenario-based vibration
test case generation method, test generation criteria, and a
set of new algorithms for automatic test case generation.

Finite state machine (FSM) is a mathematical model
describing transitions from state to state and its extended
forms including abstract state machines and statecharts are
often used to model reactive behaviors of communication
protocols and embedded systems [60]. Lee presented a
survey on various principles and methods of testing reactive
systems based on FSM, in which the conformance testing is
in particular related to our interest in this paper [61]. The
essential idea is that the system under test is specified by a
FSM and implemented as a “black box” from which we can
only observe its input/output behavior. The test sequences
are generated based on the FSM and used to determine
whether the implementation is consistent with the transition
sequence required by the test sequence. Several specific
techniques for test case generation have been proposed
and developed based on the concept of “testing tree” [62],
[63] or UML sequence and state machine models [23], [64].
Veanes et al. reported a tool known as Spec Explorer deployed
by Microsoft since 2004 for testing reactive, object-oriented
software systems [65] and Tretmans et al. developed a test
tool known as TorX to support automatic test generation,
test execution, and test analysis based on labelled transition
models for reactive systems [66], [67]. The studies on FSM-
based test case generation mentioned above are character-
ized by generating test sequences to cover all of the desired
states and transitions between states. Although both FSM-
based testing method and our method use formalism as the
foundation for test case generation, the nature and struc-
ture of FSM are different from pre-post style specifications.
Therefore, the techniques for generating test cases in the
two kinds of methods are also different. The former chooses
test sequences by trying to covering the desired states and
transitions, while our method selects test cases based on
logical expressions. In general, the FSM model is suitable
for testing reactive systems, while our method is suitable
for testing information systems in which rich data types are
used.

A pre-post style model-based specification describes the
behavior of an operation by defining the initial states be-
fore operation using a pre-condition and final states after
operation using a post-condition, and various researches on
software testing based on such a specification have been
reported in the literature. Dick and Faivre proposed an
approach to generating test data based on partitioning the
conjunction of pre-condition, post-condition, and invariant
for a VDM operation of interest into disjoint sub-relations
by means of Disjunctive Normal Form (DNF) [22]. Such
sub-relations are used to generate test data for testing

both individual operations and their integrations. It does
not seem to be clear from the paper how logical expres-
sions involving only input variables (including the initial
state variables) and logical expressions involving output
variables (including final state variables) are automatically
separated, which is necessary for automation of test data
generation. The paper does not discuss the impact of the test
data generated from the specification on the coverage in the
program either, which is shared by other similar research
as well. The similar principles are applied by Legeard et
al. for test data generation from B or Z notation [68], [69],
[70], and has been adapted in many test data generation
tools, some of which use interactive theorem prover [71],
[72] and others are fully automated with constraint-logic
programming [73] or with heuristic algorithms driven by
the syntactical form [74]. Satpathy and Butler et al. devel-
oped an automatic testing approach from B formal specifi-
cations [14]. Test data are generated by performing symbolic
execution over a B specification, and a test driver, which
is a Java program, is obtained automatically from the test
data. When it is run in conjunction with the implementation,
testing is performed automatically. The main contribution
of the work can be characterized as mechanical derivation
of a test driver from a B specification for automatic test-
ing, which can even handle non-determinism. TestEra [75]
accepts representation constraints for such data structures
and generates non-isomorphic test data by using a solu-
tion enumeration technique to use propositional constraint
solver or SAT engine [76]. It generates test data for concrete
representation of data structures and thus improves the
test quality to cover program paths sensitive to the shape
of data structures. Aichernig and Salas took the mutation
testing view to propose a fault-based approach to test data
generation for pre- and post-condition specifications in OCL
[77], [78]. The essential idea is first to mutate the pre- and
post-conditions and then try to generate test data from
the specification that help find the anticipated errors. Such
test data are believed to possess potential capability of
finding real errors. Aichernig also investigated the issue of
how VDM operation specifications can be used to derive
test oracles [79]. Bouquet et al. extended the idea of test
generation based on formal specifications to Java Modeling
Language (JML), an assertion language for Java, for testing
of object-oriented programs [80]. Their major contribution is
the proposal of model coverage for selecting tests involving
structural coverage of the specification and data coverage
using a boundary analysis for numerical data. The proposed
approach uses the specification both as an oracle and as a
support for generating test data. Development techniques
that apply a similar approach to create a test suite for safety-
critical Java using JML are explored in the work [81] by Ravn
and Sondergaard.

Our method presented in this paper also adopts a
syntax-driven algorithmic approach to transforming a spec-
ification to a DNF, but has three distinct characteristics
compared to the existing work mentioned above. Firstly, the
specification is initially not only converted into a DNF, but
further into a functional scenario form of the specification as
a more suitable format for test case generation. Secondly,
our approach allows test cases and test oracle to be gen-
erated and analyzed from individual functional scenarios,
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thus achieving the effect of “divide and conquer” that can
facilitate the user to easily observe the effect of testing and
save the cost for result analysis. Finally, our method not
only deals with the coverage of required functions in the
specification, but also the coverage of execution paths in the
program.

6 CONCLUSIONS

We have developed and presented a new and system-
atic functional scenario-based vibration method called V-
Method for automatic test case generation from formal
specifications. The method is suitable for testing information
systems in which rich data types are used. It includes
two criteria for test case generation, a group of test case
generation algorithms, a V-Step for generating test cases
from atomic predicates with the aim of achieving a high
path coverage, and the definition of test oracle for test result
analysis. We have also conducted a controlled experiment to
evaluate the effectiveness of the V-Method by comparing it
with the functionality-based input domain partition method
(FBIDPM). The result shows that the V-Method is gener-
ally more effective in detecting bugs and gaining program
path coverage than the FBIDPM. In spite of the important
progress we have made in the V-Method, some challenges
still remain for future work, as we have discussed in Section
4.5.

Although our method for generating test cases is dis-
cussed on the basis of formal specification in this paper,
it can be used flexibly in practice, depending on specific
situations. If formal notation such as SOFL or VDM is
adopted in a realistic software project, the application of
our method will be straightforward. However, our method
can also be applied to the projects where only informal or
semi-formal specifications are employed. In this case, there
are two ways to apply our method. One is to apply the
underlying principles and criteria of our method in both
test case generation and test result analysis based on the
informal or semi-formal specifications, but this application
would have to be done manually. Another way is first to
formalize the informal or semi-formal specification by the
tester or relevant developer (if possible), and then apply
our method. In this case, the tester is required to be an
experienced user of formal notation. In fact, some consulting
companies have specialized in formal methods, such as
FormalTech Co., Ltd. [82] in Japan, and these companies can
serve as a tester to apply our method in practice.

7 FUTURE WORK

Our future work will concentrate on addressing the chal-
lenges described above. In particular, we will focus our
effort on improving the efficiency of our test case generation
method in achieving path coverage with minimum number
of test cases. To this end, we will study how the principles
for defining branch distance in search-based testing [83],
[84] can be properly utilized to enhance the effectiveness
of the distance definition for test case generation in our
V-Method and investigate how the well-established refine-
ment calculus and functional testing theories [33], [85] can
be used to establish a definitive relation between test case

generation from functional scenarios in the specification and
the execution of paths in the program. We will also continue
to work on the construction of a supporting tool for our
method on the basis of the prototype tools developed so far
in our lab, which include the prototypes for automatic test
case generation, automatic tracking of traversed program
paths, automatic test driver construction, and automatic test
result analysis. These prototypes are still simple and not
well integrated together, but our experience in developing
them will allow us to improve the current tools to a more
efficient and integrated software tool in the future. With the
completed tool, we will be interested in carrying out more
experiments on testing industrial scale software.
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